Center of mass and $G$-local triviality of $G$-bundles
HTML articles powered by AMS MathViewer
- by Karsten Grove
- Proc. Amer. Math. Soc. 54 (1976), 352-354
- DOI: https://doi.org/10.1090/S0002-9939-1976-0394712-2
- PDF | Request permission
Abstract:
Riemannian geometry techniques are used to give a short and constructive proof that a differentiable $G$-fibre bundle with compact fibre is $G$-locally trivial when $G$ is a compact Lie Group.References
- Edward Bierstone, The equivariant covering homotopy property for differentiable $G$-fibre bundles, J. Differential Geometry 8 (1973), 615–622. MR 341509
- Eugenio Calabi, On differentiable actions of compact Lie groups on compact manifolds. , Proc. Conf. on Transformation Groups (New Orleans, La., 1967) Springer, New York, 1968, pp. 210–213. MR 0245034
- Karsten Grove and Hermann Karcher, How to conjugate $C^{1}$-close group actions, Math. Z. 132 (1973), 11–20. MR 356104, DOI 10.1007/BF01214029
- Karsten Grove, Hermann Karcher, and Ernst A. Ruh, Group actions and curvature, Invent. Math. 23 (1974), 31–48. MR 385750, DOI 10.1007/BF01405201
- Karsten Grove, Hermann Karcher, and Ernst A. Ruh, Jacobi fields and Finsler metrics on compact Lie groups with an application to differentiable pinching problems, Math. Ann. 211 (1974), 7–21. MR 355917, DOI 10.1007/BF01344138
- Hermann Karcher, Konvexe Kurven auf zweidimensionalen Riemannschen Mannigfaltigkeiten. , Technische Universität Berlin, Berlin, 1966 (German). Von der Fakultät für Allgemeine Ingenieurwissen-schaften der Technischen Universität Berlin zur Verleihung der akademischen Würde Doktor der Naturwissenschaften Dr. rer. nat.-genehmigte Dissertation. MR 0281128
- Richard S. Palais, Equivalence of nearby differentiable actions of a compact group, Bull. Amer. Math. Soc. 67 (1961), 362–364. MR 130321, DOI 10.1090/S0002-9904-1961-10617-4
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 54 (1976), 352-354
- DOI: https://doi.org/10.1090/S0002-9939-1976-0394712-2
- MathSciNet review: 0394712