A refinement for coefficient estimates of univalent functions
HTML articles powered by AMS MathViewer
- by David Horowitz
- Proc. Amer. Math. Soc. 54 (1976), 176-178
- DOI: https://doi.org/10.1090/S0002-9939-1976-0396932-X
- PDF | Request permission
Abstract:
By examining the coefficient inequalities of FitzGerald it is shown that if $f(z) = z + {a_2}{z^2} + {a_3}{z^3} + \ldots$ is analytic and univalent in the unit disc, then $|{a_n}| < (1.0691)n$.References
- Carl H. Fitzgerald, Quadratic inequalities and coefficient estimates for schlicht functions, Arch. Rational Mech. Anal. 46 (1972), 356–368. MR 335777, DOI 10.1007/BF00281102
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 54 (1976), 176-178
- DOI: https://doi.org/10.1090/S0002-9939-1976-0396932-X
- MathSciNet review: 0396932