A peculiar triangulation of the $3$-sphere
HTML articles powered by AMS MathViewer
- by A. Altshuler
- Proc. Amer. Math. Soc. 54 (1976), 449-452
- DOI: https://doi.org/10.1090/S0002-9939-1976-0397744-3
- PDF | Request permission
Abstract:
A triangulation of the $3$-sphere with $10$ vertices is presented, which is not directly obtainable by a generalized stellar subdivision from any $3$-sphere with $9$ vertices. This answers in the affirmative a conjecture by B. Grünbaum. This example is shown to be the minimal possible.References
- James W. Alexander, The combinatorial theory of complexes, Ann. of Math. (2) 31 (1930), no. 2, 292–320. MR 1502943, DOI 10.2307/1968099
- Amos Altshuler, Combinatorial $3$-manifolds with few vertices, J. Combinatorial Theory Ser. A 16 (1974), 165–173. MR 346797, DOI 10.1016/0097-3165(74)90042-9
- Amos Altshuler and Leon Steinberg, Neighborly combinatorial $3$-manifolds with $9$ vertices, Discrete Math. 8 (1974), 113–137. MR 341491, DOI 10.1016/0012-365X(74)90059-4 —, An enumeration of combinatorial $3$-manifolds with $9$ vertices, Discrete Math. (to appear).
- L. W. Beineke and R. E. Pippert, The number of labeled dissections of a $k$-ball, Math. Ann. 191 (1971), 87–98. MR 282860, DOI 10.1007/BF02330563 L. C. Glaser, Geometrical combinatorial topology. I, Van Nostrand Reinhold, New York, 1970. B. Grünbaum, On the enumeration of convex polytopes and combinatorial spheres, ONR Technical Report, University of Washington, May 1969.
- P. J. Hilton and S. Wylie, Homology theory: An introduction to algebraic topology, Cambridge University Press, New York, 1960. MR 0115161
- P. McMullen and G. C. Shephard, Convex polytopes and the upper bound conjecture, London Mathematical Society Lecture Note Series, vol. 3, Cambridge University Press, London-New York, 1971. Prepared in collaboration with J. E. Reeve and A. A. Ball. MR 0301635
- Gopal Danaraj and Victor Klee, Shellings of spheres and polytopes, Duke Math. J. 41 (1974), 443–451. MR 345113
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 54 (1976), 449-452
- DOI: https://doi.org/10.1090/S0002-9939-1976-0397744-3
- MathSciNet review: 0397744