On going-down for simple overrings. III
HTML articles powered by AMS MathViewer
- by David E. Dobbs and Ira J. Papick
- Proc. Amer. Math. Soc. 54 (1976), 35-38
- DOI: https://doi.org/10.1090/S0002-9939-1976-0417153-8
- PDF | Request permission
Abstract:
Theorem 1. Let $R$ be an integral domain with quotient field $K$. The following three conditions are equivalent: (a) $R \subset R[u]$ satisfies going-down $(GD)$ for each $u$ in $K$; (b) $R \subset V$ satisfies $GD$ for each valuation overring $V$ of $R$; (c) $R \subset S$ satisfies $GD$ for each domain $S$ containing $R$. If (d) is the condition obtained by restricting the domains $S$ in $({\text {c)}}$ to be overrings of $R$, then $({\text {a)}} \Leftrightarrow {\text {(d)}}$ has been proved in case $R$ is Krull or integrally closed finite-conductor (e.g., pseudo-BĂ©zout) or Noetherian. Theorem 2. Let $R \subset T$ be domains such that either $\operatorname {Spec} (R)$ or $\operatorname {Spec} (T)$, as a poset under inclusion, is a tree. If $R \subset R[u,v]$ satisfies $GD$ for each $u$ and $v$ in $T$, then $R \subset T$ satisfies $GD$.References
- Eduardo Bastida and Robert Gilmer, Overrings and divisorial ideals of rings of the form $D+M$, Michigan Math. J. 20 (1973), 79â95. MR 323782 N. Bourbaki, ĂlĂ©ments de mathĂ©matique. Fasc. XXVII. AlgĂšbre commutative. Chaps. 1, 2, ActualitĂ©s Sci. Indust., no. 1290, Hermann, Paris, 1961. MR 36 #146.
- Jeffrey Dawson and David E. Dobbs, On going down in polynomial rings, Canadian J. Math. 26 (1974), 177â184. MR 330152, DOI 10.4153/CJM-1974-017-9
- David E. Dobbs, On going down for simple overrings, Proc. Amer. Math. Soc. 39 (1973), 515â519. MR 417152, DOI 10.1090/S0002-9939-1973-0417152-3
- David E. Dobbs, On going down for simple overrings. II, Comm. Algebra 1 (1974), 439â458. MR 364225, DOI 10.1080/00927877408548715
- Robert W. Gilmer, Multiplicative ideal theory, Queenâs Papers in Pure and Applied Mathematics, No. 12, Queenâs University, Kingston, Ont., 1968. MR 0229624
- RevĂȘtements Ă©tales et groupe fondamental, Lecture Notes in Mathematics, Vol. 224, Springer-Verlag, Berlin-New York, 1971 (French). SĂ©minaire de GĂ©omĂ©trie AlgĂ©brique du Bois Marie 1960â1961 (SGA 1); DirigĂ© par Alexandre Grothendieck. AugmentĂ© de deux exposĂ©s de M. Raynaud. MR 0354651
- Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. MR 0254021 I.â, Topics in commutative ring theory. III, University of ChicaÇ”o, Chicago, Ill. (mimeographed notes).
- Stephen McAdam, Going down, Duke Math. J. 39 (1972), 633â636. MR 311658
- Stephen McAdam, Two conductor theorems, J. Algebra 23 (1972), 239â240. MR 304371, DOI 10.1016/0021-8693(72)90128-7
- Stephen McAdam, Going down and open extensions, Canadian J. Math. 27 (1975), 111â114. MR 357382, DOI 10.4153/CJM-1975-013-5 I. J. Papick, Ph.D. Dissertation, Rutgers University, 1975.
- Michel Raynaud, Anneaux locaux henséliens, Lecture Notes in Mathematics, Vol. 169, Springer-Verlag, Berlin-New York, 1970 (French). MR 0277519
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 54 (1976), 35-38
- MSC: Primary 13B20
- DOI: https://doi.org/10.1090/S0002-9939-1976-0417153-8
- MathSciNet review: 0417153