A factorization of the direct limit of Hilbert cubes
HTML articles powered by AMS MathViewer
- by Richard E. Heisey
- Proc. Amer. Math. Soc. 54 (1976), 255-260
- DOI: https://doi.org/10.1090/S0002-9939-1976-0418102-9
- PDF | Request permission
Abstract:
We show that the countable direct limit of Hilbert cubes ${Q^\infty }$ is homeomorphic to the product of the Hilbert cube $Q$ and the countable direct limit of lines ${R^\infty }$. As a consequence, two open subsets of ${R^\infty }$ have the same homotopy type if and only if their products with $Q$ are homeomorphic. Combined with a theorem of D. W. Henderson our result implies that $X \times Q \times {R^\infty } \cong Q \times {R^\infty }$, where $X$ is any locally compact, separable AR (metric).References
- R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), 365–383. MR 214041
- James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. MR 0193606 N. Dundford and J. T. Schwartz, Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York, 1964.
- Richard E. Heisey, Contracting spaces of maps on the countable direct limit of a space, Trans. Amer. Math. Soc. 193 (1974), 389–411. MR 367908, DOI 10.1090/S0002-9947-1974-0367908-6
- Richard E. Heisey, Manifolds modelled on $R^{\infty }$ or bounded weak-* topologies, Trans. Amer. Math. Soc. 206 (1975), 295–312. MR 397768, DOI 10.1090/S0002-9947-1975-0397768-X
- David W. Henderson, A simplicial complex whose product with any ANR is a simplicial complex, General Topology and Appl. 3 (1973), 81–83. MR 315659
- Sze-tsen Hu, Theory of retracts, Wayne State University Press, Detroit, 1965. MR 0181977
- C. P. Rourke and B. J. Sanderson, Introduction to piecewise-linear topology, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 69, Springer-Verlag, New York-Heidelberg, 1972. MR 0350744
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 54 (1976), 255-260
- MSC: Primary 57A20
- DOI: https://doi.org/10.1090/S0002-9939-1976-0418102-9
- MathSciNet review: 0418102