Extremal and monogenic additive set functions
HTML articles powered by AMS MathViewer
- by Detlef Plachky
- Proc. Amer. Math. Soc. 54 (1976), 193-196
- DOI: https://doi.org/10.1090/S0002-9939-1976-0419711-3
- PDF | Request permission
Abstract:
The extreme points of the convex set of all additive set functions on a field, which coincide on a subfield are characterized by a simple approximation property. It is proved that a stronger approximation property is characteristic for a so-called monogenic additive set function on a field, which can be generated uniquely by an additive set function on a subfield. Finally it is shown that a simple decomposition property must hold if the convex set above has a finite number of extreme points.References
- Sterling K. Berberian, Measure and integration, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1965. MR 0183839
- Gustave Choquet, Theory of capacities, Ann. Inst. Fourier (Grenoble) 5 (1953/54), 131–295 (1955). MR 80760
- R. G. Douglas, On extremal measures and subspace density. II, Proc. Amer. Math. Soc. 17 (1966), 1363–1365. MR 205053, DOI 10.1090/S0002-9939-1966-0205053-1 N. Dunford and J. T. Schwartz (1964), Linear operators. I: General theory, Pure and Appl. Math., vol. 7, Interscience, New York. MR 22 #8302.
- H. Hanisch, W. M. Hirsch, and A. Rényi, Measures in denumerable spaces, Amer. Math. Monthly 76 (1969), 494–502. MR 243028, DOI 10.2307/2316956
- J. Łoś and E. Marczewski, Extensions of measure, Fund. Math. 36 (1949), 267–276. MR 35327, DOI 10.4064/fm-36-1-267-276 S. M. Ulam (1930), Zur Masstheorie in der allgemeinen Mengenlehre, Fund. Math. 16, 141-150.
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 54 (1976), 193-196
- MSC: Primary 28A10
- DOI: https://doi.org/10.1090/S0002-9939-1976-0419711-3
- MathSciNet review: 0419711