Multipliers of Segal algebras
HTML articles powered by AMS MathViewer
- by U. B. Tewari
- Proc. Amer. Math. Soc. 54 (1976), 157-161
- DOI: https://doi.org/10.1090/S0002-9939-1976-0447976-0
- PDF | Request permission
Abstract:
We show that there exists a noncompact locally compact abelian group $G$ and a Segal algebra $S(G)$ on $G$ whose multiplier algebra properly contains the measure algebra.References
- J. T. Burnham, Multipliers of $A$-Segal algebras on $LCA$ groups. I (preprint).
- J. Cigler, Normed ideals in $L^{1}\,(G)$, Indag. Math. 31 (1969), 273โ282. Nederl. Akad. Wetensch. Proc. Ser. A 72. MR 0250086
- R. E. Edwards, Operators commuting with translations, Pacific J. Math. 16 (1966), 259โ265. MR 188715
- G. Philip Johnson, Spaces of functions with values in a Banach algebra, Trans. Amer. Math. Soc. 92 (1959), 411โ429. MR 107185, DOI 10.1090/S0002-9947-1959-0107185-6 V. V. Kapoor, Tensor products of Segal algebras, Doctoral Dissertation, I.I.T. Kanpur, 1972.
- G. N. Keshava Murthy and K. R. Unni, Multipliers on a space of Wiener, Nanta Math. 6 (1973), no.ย 1, 29โ35. MR 350293
- Ronald Larsen, An introduction to the theory of multipliers, Die Grundlehren der mathematischen Wissenschaften, Band 175, Springer-Verlag, New York-Heidelberg, 1971. MR 0435738
- Hans Reiter, $L^{1}$-algebras and Segal algebras, Lecture Notes in Mathematics, Vol. 231, Springer-Verlag, Berlin-New York, 1971. MR 0440280
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 54 (1976), 157-161
- MSC: Primary 43A22
- DOI: https://doi.org/10.1090/S0002-9939-1976-0447976-0
- MathSciNet review: 0447976