The exact cardinality of the set of invariant means on a group
HTML articles powered by AMS MathViewer
- by Ching Chou PDF
- Proc. Amer. Math. Soc. 55 (1976), 103-106 Request permission
Abstract:
The purpose of this note is to show that if $G$ is an infinite amenable group then $G$ has exactly ${2^{{2^{|G|}}}}$ invariant means where $|G|$ denotes the cardinality of $G$.References
- Ching Chou, On the size of the set of left invariant means on a semi-group, Proc. Amer. Math. Soc. 23 (1969), 199–205. MR 247444, DOI 10.1090/S0002-9939-1969-0247444-1
- Ching Chou, On topologically invariant means on a locally compact group, Trans. Amer. Math. Soc. 151 (1970), 443–456. MR 269780, DOI 10.1090/S0002-9947-1970-0269780-8
- Mahlon M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509–544. MR 92128
- Mahlon M. Day, Fixed-point theorems for compact convex sets, Illinois J. Math. 5 (1961), 585–590. MR 138100
- E. Granirer, On amenable semigroups with a finite-dimensional set of invariant means. I, Illinois J. Math. 7 (1963), 32–48. MR 144197
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496
- Shizuo Kakutani and John C. Oxtoby, Construction of a non-separable invariant extension of the Lebesgue measure space, Ann. of Math. (2) 52 (1950), 580–590. MR 37335, DOI 10.2307/1969435
- Daniel E. Cohen, Groups of cohomological dimension one, Lecture Notes in Mathematics, Vol. 245, Springer-Verlag, Berlin-New York, 1972. MR 0344359
Additional Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 55 (1976), 103-106
- DOI: https://doi.org/10.1090/S0002-9939-1976-0394036-3
- MathSciNet review: 0394036