ON H-CLOSED SPACES

JAMES E. JOSEPH

Abstract. A characterization of H-closed spaces in terms of projections is given along with relating properties.

Introduction. The primary purpose of this paper is to give a characterization of H-closed spaces which is an analogue to the following theorem for compact spaces: A space X is compact if and only if the projection from $X \times Y$ onto Y is a closed function for every space Y [9, p. 21].

Following the notation of [6], we utilize the notion of θ-closed subsets of a topological space from [11, p. 103] and our characterization is stated as follows:

Theorem. A Hausdorff space X is H-closed if and only if for every space Y, the projection from $X \times Y$ onto Y takes θ-closed subsets onto θ-closed subsets.

Throughout, $\text{cl}(K)$ will denote the closure of a set K.

Preliminary definitions and theorems.

Definition 1. A net in a topological space is said to θ-converge (θ-accumulate) [6, Definition 3] to a point x in the space if the net is eventually (frequently) in $\text{cl}(V)$ for each V open about x.

Definition 2. A point x in a topological space X is in the θ-closure [11, p. 103] of a set $K \subset X$ (θ-cl(K)) if $\text{cl}(V) \cap K \neq \emptyset$ for any V open about x.

Definition 3. A subset K of a topological space is θ-closed [11, p. 103] if it contains its θ-closure (i.e., θ-cl(K) $\subset K$).

The following theorems give some parallels of properties of closure and closed sets in a topological space for θ-closure and θ-closed sets in the space and some relationships between these notions. The proofs of these theorems are straightforward and are omitted [11, Lemmas 1, 2, 3].

Theorem 1. A point x in a topological space is in the θ-closure of a subset K if and only if there is a net x_{α} in K which θ-converges to x ($x_{\alpha} \theta \cdot x$).

Theorem 2. In any topological space
(a) the empty set and the whole space are θ-closed,
(b) arbitrary intersections and finite unions of θ-closed sets are θ-closed,
(c) $\text{cl}(K) \subset \theta$-cl($K$) for each subset K,
(d) a θ-closed subset is closed.

Received by the editors June 30, 1975.

Key words and phrases. H-closed spaces, θ-closed subsets, projections.

© American Mathematical Society 1976
Example 1. Each nonempty countable subset of the set of reals endowed with the co-countable topology is closed but not \(\theta \)-closed.

Main results. There are several characterizations of \(H \)-closed spaces in the literature [2, p. 145], [1, p. 97]. For a definition, we use the following:

Definition 4. A Hausdorff space \(X \) is \(H \)-closed if every open cover \(\mathcal{U} \) of \(X \) contains a finite subcollection \(\mathcal{B} \) such that \(\{ \text{cl}(V) : V \in \mathcal{B} \} \) covers \(X \).

We also make use of the following theorem immediately gotten from [11, Theorem 2]:

Theorem 3. A Hausdorff space is \(H \)-closed if and only if each net in the space has a \(\theta \)-convergent subnet.

Definition 5. A function \(g : X \to Y \) is weakly continuous [6, Theorem 6] if for each net \(x_n \) in \(X \) such that \(x_n \to x \), the net \(g(x_n) \to g(x) \).

Definition 6. A function \(g : X \to Y \) has a strongly-closed graph [6, p. 473] if for each \((x, y) \in (X \times Y) \setminus G(g)\), there are open sets \(U \) and \(V \) about \(x \) and \(y \), respectively, such that \((U \times \text{cl}(V)) \cap \text{G}(g) = \emptyset \).

It is known that a function \(g : X \to Y \) has a closed graph if and only if whenever a net \(x_n \to x \) in \(X \) and \(g(x_n) \to y \) in \(Y \), it follows that \(g(x) = y \) [13, p. 115]. We have the following similar result for functions with strongly-closed graphs.

Theorem 4. A function \(g : X \to Y \) has a strongly-closed graph if and only if whenever a net \(x_n \to x \) in \(X \) and \(g(x_n) \to y \) in \(Y \), it follows that \(g(x) = y \).

Proof. Let \(g \) have a strongly-closed graph and let \(x_n \) be a net in \(X \) satisfying \(x_n \to x \) and \(g(x_n) \to y \). Then \((V \times \text{cl}(W)) \cap \text{G}(g) \neq \emptyset \) for \(V, W \) open about \(x \) and \(y \) respectively. So, \((x, y) \in \text{G}(g) \) and \(g(x) = y \). For the converse, let \((x, y) \in (X \times Y) \setminus \text{G}(g) \). Then \(y \neq g(x) \), and there is no net \(x_n \) in \(X \) satisfying \(x_n \to x \) and \(g(x_n) \to y \). If \((V_\alpha \times \text{cl}(W_\beta)) \cap \text{G}(g) \neq \emptyset \) for each pair \(V_\alpha, W_\beta \) of sets open about \(x \) and \(y \) respectively, choose \((x_{\alpha, \xi}, g(x_{\alpha, \xi})) \in (V_\alpha \times \text{cl}(W_\beta)) \cap \text{G}(g) \). The ordering of \(\{ V_\alpha \times \text{cl}(W_\beta) : V_\alpha, W_\beta \text{ open about } x \text{ and } y \text{ respectively} \} \) by inclusion renders \((x_{\alpha, \xi}, g(x_{\alpha, \xi})) \) a net with \(x_{\alpha, \xi} \to x \) and \(g(x_{\alpha, \xi}) \to y \), a contradiction. Therefore, there are sets \(V, W \) open about \(x, y \), respectively, and satisfying \((V \times \text{cl}(W)) \cap \text{G}(g) = \emptyset \); and \(G(g) \) is strongly-closed. This completes the proof.

We may use the characterizations above to give a proof of the following theorem which is different and shorter than that given in [6]. If \((x_\alpha, D)\) is a net in a space \(X \), we will denote \(\{x_\alpha : \alpha > \mu \} \) by \(T_\mu \) for each \(\mu \in D \). Using this notation it is clear that \(x_\alpha \theta \)-converges (\(\theta \)-accumulates) to a point \(x \in X \) if for each open \(V \) about \(x \), there is a \(\mu \in D \) satisfying (each \(\mu \in D \) satisfies) \(T_\mu \subset \text{cl}(V) \) \((T_\mu \cap \text{cl}(V) \neq \emptyset)\). Let \(\mathcal{S} \) denote a class of topological spaces containing the class of Hausdorff completely normal and fully normal spaces.

Theorem 5. A Hausdorff space \(Y \) is \(H \)-closed if and only if for every space in class \(\mathcal{S} \), each \(g : X \to Y \) with a strongly-closed graph is weakly continuous.

Proof. Let \(Y \) be \(H \)-closed, let \(X \) be any space and let \(g : X \to Y \) have a strongly-closed graph. Let \(x_\alpha \to x \) in \(X \). Then \(g(x_\alpha) \) is a net in \(Y \), so there is a
subnet y_β of x_α and $y \in Y$ with $g(y_\beta) \to y$. By Theorem 4, $g(x) = y$. Let V be a regular open set about $g(x)$. If $g(x_\alpha)$ is not eventually in $\text{cl}(V)$, there is a subnet z_α of x_α such that $g(z_\alpha)$ θ-converges to some $z \in Y - V$ since $Y - V$ is a regular closed set and thus H-closed. This then forces $g(x) \in Y - V$, a contradiction. So $g(x_\alpha) \to g(x)$. For the converse, let $x_0 \in Y$ and let (x_α, D) be a net in $Y - \{x_0\}$ with no θ-accumulation point in $Y - \{x_0\}$. Let $X = \{x_\alpha: \alpha \in D\} \cup \{x_0\}$ with the topology generated by $\{\{x_\alpha\}: \alpha \in D\}$ and $\{T_\mu \cup \{x_0\}: \mu \in D\}$ as the basic open sets. X is a Hausdorff door space \cite[p. 76]{7} and is easily shown to be in class \mathcal{S}. Let $i: X \to Y$ be the identity function and let $(x, y) \in (X \times Y) - G(i)$. If $x \neq x_0$, then $\{x\}$ is open in X; choose V open in Y about y with $x \not\in \text{cl}(V)$. Then, clearly, $((\{x\} \times \text{cl}(V)) \cap G(i)) \cap \text{cl}(V) = \emptyset$. If $x = x_0$, then $y \neq x_0$; so there is a $\mu \in D$ and a V open in Y about y satisfying $x_0 \not\in \text{cl}(V)$ and $T_\mu \cap \text{cl}(V) = \emptyset$. So $X - \text{cl}(V)$ is open in X about x and $(X - \text{cl}(V)) \cap \text{cl}(V) = \emptyset$. Thus, i has a strongly-closed graph and is weakly continuous. Consequently, if V is open about x_0, there is a $\mu \in D$ satisfying $T_\mu \subset \text{cl}(V)$ \cite[p. 44]{8}, so $x_\alpha \to x_0$. This completes the proof.

In \cite[p. 474]{6}, an example is given to show that the strongly-closed graph condition in Theorem 5 cannot be relaxed to a closed graph condition. This example was extracted from \cite{12} and is not described explicitly in \cite{6} presumably because of its somewhat complicated description. We now exhibit a space with a simpler description which meets the purposes of the example in \cite{6}.

Example 2. Let N be the set of positive integers and let $X = \{0\} \cup [1, \infty)$ with the topology generated by the usual subspace topology of the reals on $[1, \infty)$ and $\{\{0\} \cup \bigcup_{m \in N} (k, k + 1): m \in N\}$ as basic open sets.

(a) The space X is Hausdorff.

(b) The space X is not compact since N is an infinite subset of X without accumulation points.

(c) The space X is H-closed.

(d) The function g, from $\{1 + 1/n: n \in N\} \cup \{1\}$ with the subspace topology, defined by $g(1) = 1$ and $g(1 + 1/n) = n$ for each $n \in N$ has a closed graph which is not strongly-closed. Also, g is not weakly continuous at 1.

In \cite{3}, \cite{4}, \cite{5}, and \cite{10}, theorems of the following form are proved: X has property λ if and only if the projection $\pi_y: X \times Y \to Y$ is closed for each space Y in a certain class. The next four theorems and main results give an analogue of this form for H-closed spaces.

Theorem 6. If X is an H-closed space then the projection from $X \times Y$ onto Y takes θ-closed subsets onto θ-closed subsets for any space Y.

Proof. Let X be H-closed, let Y be any space and let $K \subset X \times Y$ be θ-closed. Let $y \in \theta - \text{cl}(\pi_y(K))$. There is a net $(x_\alpha, y_\alpha) \in K$ with $y_\alpha \to y$. There is a subnet $x_{\alpha'}$ of x_α and $x \in X$ with $x_{\alpha'} \to x$. So $(x_{\alpha'}, y_{\alpha'}) \to (x, y)$ and $(x, y) \in \theta - \text{cl}(K) \subset K$. Thus $y \in \pi_y(K)$.

Theorem 7. If X is a Hausdorff space and the projection from $X \times Y$ onto Y
takes \(\theta \)-closed subsets onto closed subsets for every space \(Y \), then \(X \) is \(H \)-closed.

Proof. Let \((y_\alpha, D)\) be a net in \(X \) with no \(\theta \)-convergent subnet and let \(y_0 \notin X \). Let \(Y = \{ y_\alpha : \alpha \in D \} \cup \{ y_0 \} \) with the topology generated by \(\{ \{ y_\alpha \} : \alpha \in D \} \) and \(\{ T_\mu \cup \{ y_0 \} : \mu \in D \} \) as basic open sets. Let \(K = \{ (y_\alpha, y_\alpha) : \alpha \in D \} \) and let \((a, b) \in (X \times Y) - K \). Then \(a \neq y_0 \) and \(a \neq b \). Let \(V \) be open about \(a \) satisfying \(\{ b, y_0 \} \subset Y - \text{cl}(V) \) and \(T_\mu \subset Y - \text{cl}(V) \) for some \(\mu \in D \). Then \(Y - \text{cl}(V) \) is open and closed in \(Y \) and so \(X \times (Y - \text{cl}(V)) \) is open about \((a, b)\). Also,

\[
\text{cl} [X \times (Y - \text{cl}(V))] \cap K = (\text{cl}(V) \times (Y - \text{cl}(V))) \cap K = \emptyset.
\]

Thus, \((a, b) \in \theta \text{-cl}(K)\) and \(K \) is \(\theta \)-closed. \(\pi_\gamma(K) \) is therefore closed in \(Y \) and \(y_0 \in \text{cl}(\pi_\gamma(K)) \). This is a contradiction establishing the result.

Combining Theorems 6 and 7, we get the promised result.

Theorem 8. A Hausdorff space \(X \) is \(H \)-closed if and only if for every space \(Y \), the projection from \(X \times Y \) onto \(Y \) takes \(\theta \)-closed subsets onto \(\theta \)-closed subsets.

Noting that the space \(Y \) used in the proof of Theorem 7 is a Hausdorff door space and is in the class \(S \) whose description precedes Theorem 5, we may state the following theorem.

Theorem 9. A Hausdorff space \(X \) is \(H \)-closed if and only if for every Hausdorff door space (space in class \(S \)) \(Y \), the projection from \(X \times Y \) onto \(Y \) takes \(\theta \)-closed subsets onto \(\theta \)-closed subsets.

References

Department of Mathematics, Federal City College, Washington, D. C. 20001