ON REALIZING CENTRALIZERS OF CERTAIN ELEMENTS IN THE FUNDAMENTAL GROUP OF A 3-MANIFOLD

C. D. FEUSTEL

ABSTRACT. The main result in this note is that if λ is a simple loop in the boundary of a compact, irreducible, orientable 3-manifold M and $[\lambda] \neq 1 \in \pi_1(M)$, one can represent the centralizer of $[\lambda]$ in $\pi_1(M)$ by a Seifert fibred submanifold of M.

Introduction. The main result in this note is a partial answer to a question of Jaco [2]. Jaco has shown in [2] that the centralizer of a nontrivial element in the fundamental group of a sufficiently large compact, orientable 3-manifold is isomorphic to the fundamental group of a Seifert fibre space. He also suggests that one might geometrically realize this group by a submanifold of the ambient manifold. It is the purpose of this note to show that the above realization can in fact be made if the element is represented by a simple loop in the boundary of the 3-manifold and the 3-manifold is irreducible.

Proposition 7.1 in [2] is quite similar to our Theorem 2. Our notation and definitions are standard unless otherwise indicated.

We say that a manifold N is properly embedded in a manifold M if $N \cap \partial M = \partial N$. Let A be an annulus. A spanning arc α of A is an arc properly embedded in A such that $A - \alpha$ is simply connected. Throughout the remainder of this paper α will denote a spanning arc of A.

Proposition 1. Let A_1, \ldots, A_m be a collection of annuli properly embedded in M such that $A_i \cap A_j = \partial A_i = \partial A_j$ for $1 \leq j < i \leq m$. Let $f: (A, \partial A) \to (M, \partial M)$ be a map such that $(1) f(\partial A) = \partial A_1$, $(2) f_*: \pi_1(A) \to \pi_1(M)$ is monic, and $(3) f(\alpha)$ is not homotopic rel its boundary to an arc in $\bigcup_{i=1}^m A_i$. Then there is an embedding $g: (A, \partial A) \to (M, \partial M)$ such that

1. $g(A) \cap A_i = \partial A_i$ for $i = 1, \ldots, m$,
2. $g_*: \pi_1(A) \to \pi_1(M)$ is monic,
3. $g(\alpha)$ is not homotopic rel its boundary to an arc in $\bigcup_{i=1}^m A_i$.

Proof. We show first that $f|\partial A$ may be assumed to be an embedding. Let C_1 and C_2 be the components of ∂A. Let (\tilde{M}, ρ) be the covering space of M associated with the subgroup of $\pi_1(M)$ generated by the class of the simple loop $f(C_i)$. Since $f_*\pi_1(A) \subseteq \rho_*\pi_1(M)$, there is a map $\tilde{f}: (A, \partial A) \to (\tilde{M}, \partial \tilde{M})$ such that $\rho \tilde{f} = f$. It is a consequence of the theorem in [8] that there is an embedding $\tilde{f}_*: (A, \partial A) \to (\tilde{M}, \partial \tilde{M})$ such that $\tilde{f}_*(\partial A) = \tilde{f}(\partial A)$. We may...
suppose that \(\tilde{f}_1(\partial \alpha) = \tilde{f}(\partial \alpha) \). Since \(\pi_1(M) \) is generated by \(\tilde{f}_1(C_1) \), we may suppose that the loop formed by traversing first \(\tilde{f}_1(\alpha) \) and then \(\tilde{f}(\alpha) \) is nullhomotopic.

Since the path \(f(\alpha) \) is end-point fixed homotopic in \(M \) to the path \(\rho_1(f)(\alpha) \), one may assume that \(f(C_1) \) is an embedding of \(C_1 \) into \(\partial A_1 \). Using a similar argument, we may show that there is no loss in generality in assuming further that \(f(C_2) \) is also an embedding of \(C_2 \) into \(\partial A_1 \).

It is a consequence of Theorem 1' in [1] that there is an embedding \(g: (A, \partial A) \to (M, \partial M) \) such that \(g(\partial A) = \partial A_1 \) and \(g(\alpha) \) is not homotopic rel its boundary to an arc in \(\bigcup_{i=1}^{n} A_i \). After the usual general position and cutting arguments, we may suppose that \(g^{-1}(\bigcup_{i=1}^{n} A_i) \) is the union of a collection of disjoint simple essential loops \(\lambda_1, \ldots, \lambda_r \). Let \(A_1, \ldots, \overline{A}_{r-1} \) be the closures of the components of \(A - \bigcup_{i=1}^{r} \overline{A}_i \). We may suppose that \(\alpha \) meets each of the \(\overline{A}_i \) in a spanning arc \(\alpha_i \) for \(i = 1, \ldots, r - 1 \). Since \(g(\alpha) \) is not homotopic rel its boundary to an arc on \(\bigcup_{i=1}^{r} A_i \), there is a \(j \) such that \(g(\alpha_j) \) is not homotopic rel its boundary to an arc on \(\bigcup_{i=1}^{r} A_i \). Now it is easy to obtain the desired embedding by considering \(g|\overline{A}_j \). This completes the proof of Proposition 1.

Let \(G \) be a group and \(\sigma \in G \). We denote the centralizer of \(\sigma \) in \(G \), i.e. \(\{g \in G: \sigma g = g \sigma \} \) by \(C(\sigma) \). The following theorem gives a positive partial answer to a question posed by Jaco in [2].

Theorem 1. Let \(M \) be a compact, connected, irreducible, orientable 3-manifold, \(\lambda \) a simple loop in \(\partial M \) which is not nullhomotopic in \(M \), and \(y \) a point in \(\lambda \). Then there is a submanifold \(N \subseteq M \) such that

1. \(\pi_1(N, y) = C([\lambda]) \subseteq \pi_1(M, y) \);
2. \(N \) is a (possibly trivial) Seifert fibre space;
3. \(\partial N \cap \partial M \) is an annular neighborhood \(A^* \) of \(\lambda \);
4. \(\partial N - A^* \) is incompressible in \(M \).

Proof. It is a consequence of the loop theorem [4], [6] that \([\lambda] \) is of infinite order in \(\pi_1(M, y) \). Let \(A \) be an annular neighborhood of \(\lambda \) in \(\partial M \). Let \(A_1, \ldots, A_n \) be a maximal collection of annuli properly embedded in \(M \) such that

1. \(\partial A_i = \partial A \) for \(i = 1, \ldots, n \);
2. \(A_i \cap A_j = \partial A_i \) for \(1 \leq i < j \leq n \);
3. If \(\alpha_j \) is a spanning arc of \(A_j \) where \(1 \leq j \leq n \), \(\alpha_j \) is not homotopic rel its boundary to an arc in \(\bigcup_{i \neq j} A_i \cup \overline{A} \).

It follows from the theorem on p. 60 in [7] that there are at most finitely many disjoint nonparallel annuli properly embedded in \(M \) and satisfying condition (1) above.

Suppose \(x \in C([\lambda]) \). Then we claim \(x \) has a representative loop on \(\bigcup_{i=1}^{n} A_i \cup \overline{A} \).

If our claim is false, we let \(T \) be a torus and \(\lambda_1 \) and \(\lambda_2 \) simple loops on \(T \) such that \(\lambda_1 \cap \lambda_2 \) is a single point and \(T - (\lambda_1 \cup \lambda_2) \) is simply connected. Since \(x \) and \([\lambda] \) commute, there is a map \(\tilde{f}: T \to M \) carrying a neighborhood \(R \) of \(\lambda_1 \) homeomorphically onto \(A \) and \(\lambda_2 \) to a representative of \(x \) in \(\pi_1(M) \). One obtains an annulus \(A \) by removing the interior of \(R \) from \(T \) so that \(\tilde{f} \) induces a map \(f: (A, \partial A) \to (M, \partial A) \). We observe that if \(\alpha \) is a spanning arc of \(A \), \(f(\alpha) \) is not homotopic rel its boundary to an arc on \(\bigcup_{i=1}^{n} A_i \cup \overline{A} \), since \(x \)
has no representative in that set. Thus it follows from Proposition 1 that the collection was not chosen to be maximal. Our claim follows.

Let \(X = \mathcal{A} \cup \bigcup_{i=1}^{n} A_{i} \). We claim that \(\pi_{1}(X) \) is the direct product of a free group with the integers. This can be seen by

1. choosing a spanning arc \(\alpha \) of \(\mathcal{A} \),
2. choosing a spanning arc \(\alpha_{i} \) of \(A_{i} \) for \(i = 1, \ldots, n \), so \(\partial \alpha_{i} = \overline{\alpha} \cap A_{i} \),
3. letting \(X_{0} = \overline{\alpha} \cup \bigcup_{i=1}^{n} \alpha_{i} \),
4. observing that \(X \) is naturally homeomorphic to \(X_{0} \times S^1 \).

Let \(N_{i} \) be a regular neighborhood of \(X \) in \(M \). Note that by construction \(N_{i} \) is homeomorphic to the product of a surface \(F \) with \(S^1 \) and that \(\lambda \) is the product of a point with \(S^1 \) in this structure. Note each component of \(\partial N_{i} \) is a torus. Suppose \(T \) is a component of \(\partial N_{i} - \mathcal{A} \) such that \(\ker(\pi_{1}(T) \to \pi_{1}(M)) \neq 1 \). Then since \(M \) is irreducible, it is a consequence of the loop theorem [4], [6] that \(T \) bounds a solid torus in \(M \). Let \(N \) be the union of \(N_{i} \) with all such solid tori. Now \(N \) is a Seifert fibre space and \(\ker(\pi_{1}(N) \to \pi_{1}(M)) = 1 \). This completes the proof of Theorem 1.

Theorem 2. Let \(M \) be a compact, irreducible, orientable 3-manifold with incompressible boundary and \(\lambda \) a simple loop in \(\partial M \) such that \([\lambda] \neq 1 \in \pi_{1}(M) \). Then if there exist integers \(n > k > 1 \) and \(x \in \pi_{1}(M) \) such that \(x^{n} = [\lambda]^{k} \), there is a solid torus \(N \) embedded in \(M \) such that \(N \cap \partial M \) is an annular neighborhood of \(\lambda \) and \(\sigma \in \pi_{1}(N) \) where \(\sigma^{n} = [\lambda]^{k} \).

Proof. It is a consequence of the loop theorem [4], [6] that \([\lambda] \) is of infinite order. Let \(M^{*} \) be the Seifert fibre space whose existence is guaranteed by Theorem 1. We suppose that \(M^{*} \) is the union of \(F \times S^1 \) with a collection of solid tori (regular neighborhoods of the exceptional fibres) \(N_{1}, \ldots, N_{k} \) in the interior of \(M^{*} \), that there is a point \(y \in F \) such that \(\lambda = \{y\} \times S^1 \), and \(N_{i} \cap F \times S^1 = \partial N_{i} \) for \(i = 1, \ldots, k \). Let \(\alpha_{i} \) be a simple arc properly embedded in \(F \) such that \(\partial (\alpha_{i} \times S^1) \) is the union of \(\lambda \) and a simple loop in \(\partial N_{i} \) for \(i = 1, \ldots, k \). Let \(R_{1} \) be a regular neighborhood of \(\alpha_{i} \times S^1 \cup N_{i} \) and let \(M_{1} \) be the closure of \(M^{*} - R_{1} \). Note that \(R_{1} \) is a solid torus.

By van Kampen's theorem \(\pi_{1}(M^{*}) \) is the free product of \(\pi_{1}(M_{1}) \) and \(\pi_{1}(R_{1}) \) with amalgamation over \(\pi_{1}(M_{1} \cap R_{1}) = \langle [\lambda] \rangle \). Note that any conjugate of \(x \) in \(\pi_{1}(M^{*}) \) is an \(n \)th root of \([\lambda]^{k} \) since \([\lambda] \) commutes with all elements of \(\pi_{1}(M^{*}) \). Now it is a consequence of Lemma 10 in [5] that we may suppose that \(x \) has length 1 since length\([\lambda]^{k} = 1 \) and length\([\lambda]^{k} = \text{length } x^{n} = n \cdot (\text{length } x) \) if \((\text{length } x) > 1 \) where \(x \) is assumed to be an element represented by a cyclically reduced word. Thus we may suppose that \(x \in \pi_{1}(R_{1}) \) or \(x \in \pi_{1}(M_{1}) \).

If \(x \in \pi_{1}(R_{1}) \), we are finished. Otherwise we let \(M_{1}^{*} \) be the closure of \(M^{*} - N_{1} \). Now \(x^{n} = [\lambda]^{k} \) holds in \(\pi_{1}(M_{1}^{*}) \) since it holds in \(\pi_{1}(M_{1}) \). Furthermore \(M_{1}^{*} \) has one less singular fibre than \(M^{*} \). Since the relation \(x^{n} = [\lambda]^{k} \) holds in \(\pi_{1}(F \times S^1) \) only if \(n \) divides \(k \), the desired result follows by induction on the number of singular fibres.

In [5] Shalen points out that he has left open the following question: Does every encrusted singular curve have a crust homeomorphic to \(\mathbb{R}^{2} \times S^1 ? \)

Since an “encrusted curve” is special and any “special conjugacy class” can be represented by a power of a simple loop by Proposition 2 in [5], one is
easily able to answer the above question in the affirmative using Theorem 2 above. Jaco has also given an answer to this question in [2].

REFERENCES

7. F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2)87(1968), 56–88. MR 36 #7146.

DEPARTMENT OF MATHEMATICS, VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY, BLACKSBURG, VIRGINIA 24061