ABSOLUTELY STABLE GAMES

ROBERT JAMES WEBER

Abstract. Absolutely stable games, in which every monotone chain of domination reduces to direct domination, are explicitly characterized. Simple games, and n-person games in which all minimal-vital coalitions contain at least n - 1 players, are seen to satisfy the characterization.

Harsanyi [1, pp. 1477-1479] has considered games for which all von Neumann-Morgenstern solutions exhibit a strong form of internal stability. The class of such games includes all absolutely stable games, which Harsanyi defined by a property of chains of domination. It is our purpose to give an explicit characterization of these absolutely stable games.

Let v be a (0, 1)-normalized monotonic game, with player set N. A coalition T is minimal-vital if v(T) > 0 and if for every S \subseteq T, v(S) = 0. A monotone chain is a sequence of imputations and coalitions \((x_0, S_1, x_1, \ldots, S_m, x_m)\) satisfying

1. \(x_{k-1} \text{ dom}(S_k) x_k\), and
2. \((x_0)_i > (x_k)_i\) for all \(i \in S_k\),

for \(1 \leq k \leq m\). The game is absolutely stable if for every monotone chain \((x_0, S_1, x_1, \ldots, S_m, x_m)\), it follows that \(x_0\) dominates \(x_m\).

Theorem. A game v is absolutely stable if and only if

(a) for every minimal-vital coalition T, if \(N \not\subseteq S \subseteq T\) then \(v(S) = v(T)\), and
(b) for every minimal-vital coalition T with \(v(T) < 1\), every other coalition S with \(v(S) > 0\) satisfies either \(S \supseteq T\) or \(S \supseteq N - T\).

Proof. Sufficiency. Assume that the conditions are satisfied, and consider a monotone chain \((x_0, S_1, x_1, \ldots, S_m, x_m)\). We will show that \(x_0 \text{ dom}(S_m) x_m\). By (a), all the coalitions of the chain can be assumed to be minimal-vital. By (2), \((x_0)_i > (x_m)_i\) for all \(i \in S_m\). To begin, notice that \(x_{m-1}(S_m) < v(S_m)\), where for notational convenience we generally write \(x(S) = \sum_{i \in S} x_i\). Proceeding by induction, we assume \(x_k(S_m) < v(S_m)\) and consider \(x_{k-1}\). If \(v(S_m) = 1\), then

\[x_{k-1}(S_m) \leq x_{k-1}(N) = 1 = v(S_m)\]

Otherwise (b) applies to \(S_m\), and either (i) \(S_k \supseteq S_m\), or (ii) \(S_k \supseteq N - S_m\).

If (i) applies, then since \(S_k\) is minimal-vital, it follows that \(S_k = S_m\) and therefore

\[x_{k-1}(S_m) = x_{k-1}(S_k) \leq v(S_k) = v(S_m)\]

Received by the editors January 30, 1975.

Key words and phrases. n-person games, von Neumann-Morgenstern solutions.
\[x_{k-1}(S_m) = x_{k-1}(S_k) \leq v(S_k) = v(S_m). \]

On the other hand, if (ii) applies, then \(x_{k-1}(N - S_m) > x_k(N - S_m), \) and therefore
\[x_{k-1}(S_m) < x_k(S_m) \leq v(S_m), \]
the last inequality following from the induction hypothesis. Thus in any case it eventually follows that \(x_0 \text{ dom}(S_m) x_m, \) and therefore \(x_0 \text{ dom}(S_m) x_m. \)

Necessity. Assume that \(T \) is minimal-vital with \(v(T) < 1 \), and consider any \(S \) for which \(v(S) > 0, S \supset T, \) and \(S \not\subset N - T. \) Then \(R = N - (S \cup T) \neq \emptyset \) and \(T - S \neq \emptyset. \) We write \(n, r, s, t \) for the respective cardinalities of \(N, R, S, T. \) Let
\[
\begin{align*}
x_i &= \begin{cases}
(1 - (2s + r)e)/(t - s) & \text{if } i \in T - S, \\
2e & \text{if } i \in S, \\
e & \text{if } i \in R,
\end{cases} \\
y_i &= \begin{cases}
\epsilon & \text{if } i \in S \cup T, \\
(1 - (n - r)e)/r & \text{if } i \in R,
\end{cases} \\
z_i &= \begin{cases}
0 & \text{if } i \in T, \\
1/(n - t) & \text{if } i \in N - T.
\end{cases}
\end{align*}
\]

Then for sufficiently small \(\epsilon > 0, x \text{ dom}(S) y \text{ dom}(T) z. \) However, \(x \) does not dominate \(z, \) since \(x(T) > v(T). \) Hence \(v \) is absolutely stable only if for every minimal-vital \(T, \) either \(v(T) = 1, \) or every \(S \) with \(v(S) > 0 \) satisfies either \(S \supset T \) or \(S \supset N - T. \) This establishes the necessity of (b).

Next, assume that \(T \) is minimal-vital with \(v(T) < 1, \) and assume that (a) fails. Then there is a minimal nonempty coalition \(S \) for which \(S \cap T = \emptyset, \ S \cup T \neq N, \) and \(v(S \cup T) > v(T). \) Select any \(k \in R = N - (S \cup T), \) and let
\[
\begin{align*}
x_i &= \begin{cases}
(v(T) + \epsilon)/t & \text{if } i \in T, \\
\epsilon & \text{if } i \in S, \\
1 - v(T) - (s + 1)\epsilon & \text{if } i = k, \\
0 & \text{if } i \in R, i \neq k,
\end{cases} \\
y_i &= \begin{cases}
\epsilon & \text{if } i \in T, \\
0 & \text{if } i \in S, \\
(1 - te) & \text{if } i \in R,
\end{cases} \\
z_i &= \begin{cases}
0 & \text{if } i \in T, \\
1/(n - t) & \text{if } i \in N - T.
\end{cases}
\end{align*}
\]

Then for sufficiently small \(\epsilon > 0, x \text{ dom}(S \cup T) y \text{ dom}(T) z. \) However, \(x \text{ dom}(W) z \) for all small \(\epsilon \) only if \(W = T \cup \{k\} \) and \(v(W) = 1. \) In this case, let
\[
\begin{align*}
x_i &= \begin{cases}
(v(T) + \epsilon)/t & \text{if } i \in T, \\
1 - v(T) - \epsilon & \text{if } i = k, \\
0 & \text{if } i \in N - W.
\end{cases}
\end{align*}
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
\[y_i = \begin{cases}
\epsilon & \text{if } i \in T, \\
0 & \text{if } i = k, \\
(1 - \epsilon)/(n - t - 1) & \text{if } i \in N - W,
\end{cases} \]

\[z_i = \begin{cases}
0 & \text{if } i \neq k, \\
1 & \text{if } i = k.
\end{cases} \]

Then for sufficiently small \(\epsilon > 0 \), \(x \) dom(\(W \)) \(y \) dom(\(T \)) \(z \), but \(x \) does not dominate \(z \). Hence \(v \) is absolutely stable only if (a) holds. This completes the proof of the theorem.

Remark. All simple games (games in which each \(v(S) \) is either 0 or 1) satisfy (a) because of monotonicity, and trivially satisfy (b). Games in which all minimal-vital coalitions have at least \(n - 1 \) players trivially satisfy (a), and are easily seen to satisfy (b). Games of these types were first shown to be absolutely stable in [1]. As an example of a game in neither class, \(v \) defined by

\[
\begin{align*}
&v(\{1, 2\}) = v(\{1, 2, 3\}) = v(\{1, 2, 4\}) = 1/2, \\
v(\{1, 3, 4\}) = 1/4, &v(\{2, 3, 4\}) = 4/5, &v(\{1, 2, 3, 4\}) = 1,
\end{align*}
\]

and

\(v(S) = 0 \) otherwise,

is an absolutely stable four-person game.

Bibliography

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CONNECTICUT, STORRS, CONNECTICUT 06268