UNDECIDABILITY OF THE THEORY OF
ABELIAN
GROUPS WITH A SUBGROUP

WALTER BAUR

Abstract. The theory of abelian groups with an additional predicate
denoting a subgroup is undecidable.

0. Introduction. Let L be the first order language with nonlogical symbols 0, +, P, where P is a unary predicate symbol. For any class K of abelian groups let $T(K)$ denote the L-theory of the class of structures $\langle A, B \rangle$, where $A \in K$ and $B \subseteq A$ is an arbitrary subgroup. Kozlov and Kokorin [4] showed that $T(K)$ is decidable if K is the class of torsion free groups. The main result of this paper is the following:

Theorem 1. Let p be a prime number and let K be the class of abelian groups A such that $p^{q}A = 0$. Then $T(K)$ is undecidable.

An immediate consequence is

Corollary 2. $T(\text{class of all abelian groups})$ is undecidable.

Corollary 2 answers a few questions asked in [4].

1. Proof of Theorem 1. Let S be a finitely presented semigroup on two generators a_1, a_2 and defining relations $V_{\nu}(a_1, a_2) = W_{\nu}(a_1, a_2) (\nu < n)$ such that S has undecidable word problem (see e.g. Davis [2]). We are going to define a finite extension T^* of $T(K)$ and an effective map associating with every pair $\langle V, W \rangle$ of words in a_1, a_2 an L-sentence φ such that $V = W$ holds in S if and only if $T^* \vdash \varphi$.

Let A be a p-group and $a \in A$. Put $\tau(a) = \langle h(a), h(pa), h(p^2a) \rangle$ where h is the p-height, i.e. $h(x) = k$ if and only if $x \in p^kA - p^{k+1}A$. Put $\tau_0 = \langle 0, 2, 7 \rangle$, $\tau_1 = \langle 0, 3, 6 \rangle$, $\tau_2 = \langle 0, 4, 5 \rangle$. Note that for each pair $\langle i, j \rangle$, $i, j \leq 2$, $i \neq j$, τ_i has a component which is greater than the corresponding component of τ_j.

For $j = 1, 2$ let $\varphi_j(x, y)$ be the L-formula

$$x = y = 0 \lor \exists x', y'(P(x') \& P(y') \& x = p^3x' \& y = p^3y'$$

$$\& \tau(x') = \tau_0 \& \tau(y') = \tau_j \& h(x' - y') = 1).$$

Let T^* be the theory obtained from $T(K)$ by adjoining axioms (i) and (ii) below.
(i) \(\forall x(h(x) \geq 8 \rightarrow \exists y(h(y) \geq 8 \& \varphi_j(x,y))) \), \(j = 1, 2 \).

(i) simply says that \(\varphi_j \) defines a function \(f_j \) on the set of elements of height \(\geq 8 \). Therefore every word \(W(f_1, f_2) \) in \(f_1, f_2 \) defines a function \(\overline{W(f_1, f_2)} \), and a definition of this function can easily be written down in terms of \(\varphi_1, \varphi_2 \).

(ii) \(\forall x(h(x) \geq 8 \rightarrow V(f_1, f_2)(x) = \overline{W(f_1, f_2)}(x)) \), \(\nu < n \).

From (ii) it follows immediately that

\[
T^* \vdash \forall x(h(x) \geq 8 \rightarrow V(f_1, f_2)(x) = \overline{W(f_1, f_2)}(x))
\]

whenever \(V(a_1, a_2) = W(a_1, a_2) \) holds in \(S \). Since every countable semigroup can be embedded in the semigroup of endomorphisms of a countable vector space over the field \(F \) with \(p \) elements, the converse (and the theorem) clearly follow from

Claim. For any pair \(g_1, g_2 \) of endomorphisms of a countably infinite vectorspace \(V \) over \(F \) there exists a model \(\langle A, B \rangle \) of \(T(K) \) satisfying (i) such that \(\langle V, g_1, g_2 \rangle \cong \langle p^8 A, f_1, f_2 \rangle \) where \(f_1, f_2 \) are defined by \(\varphi_1, \varphi_2 \).

Proof of Claim. Put \(M = \{1, 3, 4, 6, 7, 9\} \) and for \(i \in M \) put \(A_i = (\mathbf{Z}/p^i\mathbf{Z})^{(n)}, A = \bigoplus_{i \in M} A_i \), and let \((a_{i,k})_{k \in \omega} \) be a basis of \(A_i \). Identify \(V \) with \(p^8 A = p^8 A_9 \) and let \(a_{8,k} \in A_9 \) such that \(g_j(p^8 a_{8,k}) = p^8 a_{9,k}, j = 1, 2, k \in \omega \). For \(k \in \omega \) put

\[
\begin{align*}
b_{0,k} &= p^5 a_{9,k} + p^2 a_{4,k} + p a_{3,k} + a_{1,k}, \\
b_{1,k} &= p^5 a_{9,k}^{(1)} + p^2 a_{4,k} + a_{1,k}, \\
b_{2,k} &= p^5 a_{9,k}^{(2)} + a_{1,k},
\end{align*}
\]

and let \(B \) be the subgroup of \(A \) generated by all the \(b_{j,k} \)'s. Note that \(\sigma(b_{j,k}) = \tau_j \). The important property of these generators is

\[
\text{if } b = \sum_{i \leq 2} \sum_{k \in \omega} r_{i,k} b_{i,k}, r_{i,k} \in \mathbf{Z}, \text{ and } \tau(b) = \tau_j, \text{ then}
\]

\[
(*) \quad p \text{ divides } r_{i,k} \text{ for all } (i, k) \text{ such that } i \neq j.
\]

Assume, e.g., \(\tau(b) = \tau_1 \). Then \(p \) divides \(r_{0,k} \) because otherwise \(h(pb) = 2 \), and \(p \) divides \(r_{2,k} \) because otherwise \(h(p^2 b) = 5 \). The remaining two cases are similar.

Next we show that \(\varphi_j(a, g_j(a)) \) holds in \(\langle A, B \rangle \) for all \(a \in p^8 A, j = 1, 2 \).

This is clear if \(a = 0 \). Assume \(a = \sum_k r_k p^8 a_{9,k} \neq 0, 0 \leq r_k < p \). Put \(x' = \sum_k r_k b_{0,k}, y' = \sum_k r_k b_{j,k} \) and look at the definition of \(\varphi_j \) and \(B \).

It remains to show that \(\langle A, B \rangle \) satisfies (i). Assume \(\varphi_1(a, a_1) \) and \(\varphi_1(a, a_2) \) both hold in \(\langle A, B \rangle \) (the case \(j = 2 \) is analogous). To show: \(a_1 = a_2 \). Leaving the simpler case \(a = 0 \) to the reader we assume \(a \neq 0 \). By the definition of \(\varphi_1(x, y) \) there exist \(b_1, b_2, b_1, b_2 \in B \) such that for \(j = 1, 2 \)

\[
\begin{align*}
(1) \quad a &= p^3 b_j, \quad a_j = p^3 b_j, \\
(2) \quad \tau(b_j) &= \tau_0, \quad (\nu_j) = \tau_1, \\
(3) \quad h(b_j - b_j) &= 1.
\end{align*}
\]

Write \(b_j = \sum_{i \leq 2} \sum_{k \in \omega} s_{i,k}^{(j)} b_{i,k}, b_j = \sum_{i \leq 2} \sum_{k \in \omega} s_{i,k}^{(j)} b_{i,k}, r_{i,k}, s_{i,k} \in \mathbf{Z}. (*) \) and (2) imply
(4) \(p \) divides \(r_{1,k}^{(j)}, r_{2,k}^{(j)}, s_{0,k}^{(j)}, s_{2,k}^{(j)} \) for all \(k \in \omega, j = 1, 2 \).

This together with (3) gives

(5) \(r_{0,k}^{(j)} = s_{1,k}^{(j)} \pmod{p} \) for all \(k \in \omega, j = 1, 2 \).

(1) and (4) imply

\[
a = \sum_k r_{0,k}^{(j)} p^3 b_{0,k}, \quad a_j = \sum_k s_{1,k}^{(j)} p^3 b_{1,k}, \quad j = 1, 2.
\]

Combining the last two equations with (5) we obtain \(s_{1,k}^{(j)} = s_{2,k}^{(j)} \pmod{p} \) for all \(k \), and therefore \(a_1 = a_2 \). This proves Theorem 1.

Remark. Although \(T(K) \) is undecidable it is impossible to interpret number theory in it. This is a consequence of the fact that \(T(K) \) is stable in the sense of Shelah [5] whereas number theory is unstable. Stability of \(T(K) \) follows from [1] and the proof of Corollary 3 below.

2. Theories of modules

For any recursive ring \(R \) with identity let \(T_R \) denote the first order theory of \(R \)-modules in the language with nonlogical symbols 0, +, \(f \) (\(r \in R \)) (cf. Eklof-Sabbagh [3]). Theorem 1 can be used to prove undecidability of \(T_R \) for various rings \(R \).

Corollary 3. There exist finite commutative rings \(R \) such that \(T_R \) is undecidable.

Proof. Put \(R = R'[X]/(X^2) \) where \(R' \) is the prime ring of characteristic 29. If \(M \) is an \(R \)-module then the pair \(\mathcal{A}_M = \langle \{m \in M | Xm = 0\}, XM \rangle \), considered as a pair of abelian groups, is a model of \(T(K) \). Conversely assume \(\langle A, B \rangle \models T(K) \). Let \(B_1 \) be an isomorphic copy of \(B \) and define an endomorphism \(X \) of \(M = A \oplus B_1 \) by \(Xa = 0 \) for \(a \in A \), \(Xb_1 = b \) for \(b_1 \in B_1 \). Clearly this provides \(M \) with an \(R \)-module structure, and \(\mathcal{A}_M = \langle A, B \rangle \). This gives a faithful interpretation of \(T(K) \) in \(T_R \), hence \(T_R \) is undecidable.

Let \(F \) be a finite field. The decidability proof for the theory of abelian groups given by Szmielew [6] applies also to \(T_{F[X]} \). In contrast the next corollary shows that \(T_{F[X,Y]} \) is undecidable.

Corollary 4. If \(R \neq 0 \) is any recursive commutative ring then \(T_{R[X,Y]} \) is undecidable.

Proof. Replacing \(p \) by \(X \) and making a few obvious changes in the proof of Theorem 1 we obtain that the theory of the class of structures \(\langle M, N \rangle \), \(M \) an \(R[X] \)-module and \(N \subseteq M \) a submodule, is undecidable. By an argument similar to the one used in the proof of Corollary 3 it follows that \(T_{R[X,Y]} \) is undecidable.

References

4. G. T. Kozlov and A. I. Kokorin, Elementary theory of abelian groups without torsion, with a

Seminar für Angewandte Mathematik der Universität Zürich, Freierstrasse 36, 8032 Zürich, Switzerland