$p$th powers of distinguished subfields
HTML articles powered by AMS MathViewer
- by Nicholas Heerema
- Proc. Amer. Math. Soc. 55 (1976), 287-292
- DOI: https://doi.org/10.1090/S0002-9939-1976-0392949-X
- PDF | Request permission
Abstract:
Let $k \supset s \supset {k_0}$ be fields of characteristic $p \ne 0,k/{k_0}$ finitely generated and $s$ a distinguished subfield. The field ${k_0}({k^{(n)}}) = \{ x \in k|{x^{{p^t}}} \in {k_0}({k^{{p^{n + t}}}}){\text { for some }}t \geqslant 0\}$ has ${k_0}({s^{{p^n}}})$ as a distinguished subfield and is maximal in $k$ with respect to this property. Let $\overline k _0^s$ and ${\bar k_0}$ be, respectively, the separably algebraic closure and the algebraic closure of ${k_0}$ in $k$. Then ${\overline k _0} = { \cap _k}{k_0}({k^{(n)}})$. Also $\overline k _0^s = {\bar k_0}$ if and only if ${k_0}({k^p}) \supset {k_0}({k^{(n)}})$ for some $n$. For $n$ large ${k_0}({k^{(n)}}) = {\overline k _0}({k^{{p^n}}})$. The sequence ${\{ {[{k_0}({k^{(n)}}):{k_0}]_i}\} _n}$ is decreasing, descending from ${[k:{k_0}]_i}\;{\text {to }}{[\overline {k:} {k_0}]_i}$ in a finite number of steps. Examples are given which show: (1) that ${k_0}({k^{(n)}})$ may have distinguished subfields not of the form ${k_0}({s^{{p^n}}})$; and, (2) how to construct $k/{k_0}$ so that the sequence $\{ [{k_0}{({k^{(n)}}:{k_0}]_i}\}$ has preassigned values.References
- Jean Dieudonné, Sur les extensions transcendantes séparables, Summa Brasil. Math. 2 (1947), no. 1, 1–20 (French). MR 25441
- Nickolas Heerema and James Deveney, Galois theory for fields $K/k$ finitely generated, Trans. Amer. Math. Soc. 189 (1974), 263–274. MR 330124, DOI 10.1090/S0002-9947-1974-0330124-8
- Nathan Jacobson, Lectures in abstract algebra. Vol III: Theory of fields and Galois theory, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London-New York, 1964. MR 0172871, DOI 10.1007/978-1-4612-9872-4
- Hanspeter Kraft, Inseparable Körpererweiterungen, Comment. Math. Helv. 45 (1970), 110–118 (German). MR 260709, DOI 10.1007/BF02567318
- André Weil, Foundations of Algebraic Geometry, American Mathematical Society Colloquium Publications, Vol. 29, American Mathematical Society, New York, 1946. MR 0023093, DOI 10.1090/coll/029
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 55 (1976), 287-292
- DOI: https://doi.org/10.1090/S0002-9939-1976-0392949-X
- MathSciNet review: 0392949