A note on the construction of simply-connected $3$-manifolds as branched covering spaces of $S^{3}$
HTML articles powered by AMS MathViewer
- by Joan S. Birman
- Proc. Amer. Math. Soc. 55 (1976), 440-442
- DOI: https://doi.org/10.1090/S0002-9939-1976-0394629-3
- PDF | Request permission
Abstract:
Let $K$ be a knot in ${S^3}$, and let $\omega :{\pi _1}({S^3} - K) \to {\Sigma _n}$ be a transitive representation into the symmetric group ${\Sigma _n}$ on $n$ letters. The pair $(K,\omega )$ defines a unique closed, connected orientable $3$-manifold $M(K,\omega )$, which is represented as an $n$-sheeted covering space of ${S^3}$, branched over $K$. A procedure is given for representing $M(K,\omega )$ by a Heegard splitting, and a formula is given for computing the genus of that Heegard splitting of $M(K,\omega )$. This formula is then applied to the $3$-sheeted irregular covering spaces studied by Hilden (Bull. Amer. Math. Soc. 80 (1974), 1243-1244) and Montesinos (Bull. Amer. Math. Soc. 80 (1974), 845-846), and, also, Tesis (Univ. de Madrid, 1971) to show that these particular covering spaces cannot yield counterexamples to the Poincaré Conjecture if the branch set has bridge number $< 4$.References
- Joan S. Birman and Hugh M. Hilden, The homeomorphism problem for $S^{3}$, Bull. Amer. Math. Soc. 79 (1973), 1006–1010. MR 319180, DOI 10.1090/S0002-9904-1973-13303-8
- Joan S. Birman and Hugh M. Hilden, Heegaard splittings of branched coverings of $S^{3}$, Trans. Amer. Math. Soc. 213 (1975), 315–352. MR 380765, DOI 10.1090/S0002-9947-1975-0380765-8
- R. H. Fox, Construction of simply connected $3$-manifolds, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp. 213–216. MR 0140116
- Hugh M. Hilden, Every closed orientable $3$-manifold is a $3$-fold branched covering space of $S^{3}$, Bull. Amer. Math. Soc. 80 (1974), 1243–1244. MR 350719, DOI 10.1090/S0002-9904-1974-13699-2 —, Three-fold branched coverings of ${S^3}$, Amer. J. Math. (to appear). J. M. Montesinos, Sobre la conjetura de Poincaré y los recubridores ramificados sobre un nudo, Tesis, Universidad de Madrid, 1971.
- José M. Montesinos, A representation of closed orientable $3$-manifolds as $3$-fold branched coverings of $S^{3}$, Bull. Amer. Math. Soc. 80 (1974), 845–846. MR 358784, DOI 10.1090/S0002-9904-1974-13535-4
- José M. Montesinos, A representation of closed orientable $3$-manifolds as $3$-fold branched coverings of $S^{3}$, Bull. Amer. Math. Soc. 80 (1974), 845–846. MR 358784, DOI 10.1090/S0002-9904-1974-13535-4
- George Springer, Introduction to Riemann surfaces, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1957. MR 0092855
- Friedhelm Waldhausen, Über Involutionen der $3$-Sphäre, Topology 8 (1969), 81–91 (German). MR 236916, DOI 10.1016/0040-9383(69)90033-0
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 55 (1976), 440-442
- DOI: https://doi.org/10.1090/S0002-9939-1976-0394629-3
- MathSciNet review: 0394629