A perturbation theorem for complete sets of complex exponentials
HTML articles powered by AMS MathViewer
- by Robert M. Young
- Proc. Amer. Math. Soc. 55 (1976), 318-320
- DOI: https://doi.org/10.1090/S0002-9939-1976-0397294-4
- PDF | Request permission
Abstract:
The purpose of this note is to show that the completeness of a set of complex exponentials $\{ {e^{i{\lambda _n}t}}\}$ in ${L^2}( - \pi ,\pi )$ is preserved whenever the ${\lambda _n}$ are subjected to a suitable “lifting".References
- Arne Beurling and Paul Malliavin, On the closure of characters and the zeros of entire functions, Acta Math. 118 (1967), 79–93. MR 209758, DOI 10.1007/BF02392477
- Norman Levinson, Gap and Density Theorems, American Mathematical Society Colloquium Publications, Vol. 26, American Mathematical Society, New York, 1940. MR 0003208
- W. A. J. Luxemburg, Closure properties of sequences of exponentials $\{\textrm {exp}\ (i$ $\lambda _{n}$ $t)\}$, Topics in analysis (Colloq. Math. Anal., Jyväskylä, 1970) Lecture Notes in Math., Vol. 419, Springer, Berlin, 1974, pp. 268–283. MR 0390636
- Raymond E. A. C. Paley and Norbert Wiener, Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. MR 1451142, DOI 10.1090/coll/019
- Raymond M. Redheffer, Elementary remarks on completeness, Duke Math. J. 35 (1968), 103–116. MR 225090
- Ray Redheffer, Two consequences of the Beurling-Malliavin theory, Proc. Amer. Math. Soc. 36 (1972), 116–122. MR 322439, DOI 10.1090/S0002-9939-1972-0322439-8
- Laurent Schwartz, Étude des sommes d’exponentielles. 2ième éd, Publications de l’Institut de Mathématique de l’Université de Strasbourg, V. Actualités Sci. Ind., Hermann, Paris, 1959 (French). MR 0106383
- Robert M. Young, On perturbing bases of complex exponentials in $L^{2}$ $(-\pi ,\,\pi )$, Proc. Amer. Math. Soc. 53 (1975), no. 1, 137–140. MR 377075, DOI 10.1090/S0002-9939-1975-0377075-7
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 55 (1976), 318-320
- DOI: https://doi.org/10.1090/S0002-9939-1976-0397294-4
- MathSciNet review: 0397294