SHORTER NOTES

The purpose of this department is to publish very short papers of an unusually elegant and polished character, for which there is no other outlet.

A REMARK ON THE FIRST NEIGHBOURHOOD RING
OF A NOETHERIAN COHEN-MACAULAY LOCAL RING OF
DIMENSION ONE

T. DOUSSOUKI

Abstract. There is an isomorphism between the first neighbourhood ring of a noetherian Cohen-Macaulay local ring A of dimension one and the ring of endomorphisms of a large power of its maximal ideal.

Let A be a noetherian Cohen-Macaulay local ring of dimension one and m be its maximal ideal.

An element a of m' is superficial of degree t if, for every large integer n, $m^n a = m^{n+t}$. The following results are well known: every superficial element is regular; for every large integer t, there exists a superficial element of degree t [4]. The first neighbourhood ring R of A is the subring $\{(x/y) | x \in m', y \text{ superficial of degree } t\}$ of the total quotient ring K of A. For every large integer n, the product $Rm^n = m^n$ [2, 12.1]. Let v be the least such n.

Let $\text{End}_A(m^n)$ denote the algebra of A-endomorphisms of m^n. There is a sequence

$$A \subset \text{End}_A(m) \subset \cdots \subset \text{End}_A(m^n) \subset \cdots.$$ (1)

Theorem. 1. The integer v is the least integer n such that $xm^n = m^{n+t}$ for every superficial element x, where t is the degree of x.

2. For every integer $n \geq v$, the ring $\text{End}_A(m^n) = \text{End}_A(m^n)$ and there exists an isomorphism F of A-algebras of $\text{End}_A(m^n)$ onto R such that $F(\text{Hom}_A(m^n,m^{n+1}))$ is the ideal Rm of R.

Proof. 1. Let x be a superficial element of degree t. Then $\text{length}(m^n/xm^n) = te$ where e is the multiplicity of A [2, 12.5]. If $xm^n = m^{n+t}$, then

$$\text{length}(m^n/xm^n) = \sum_{i=0}^{t-1} \text{length}(m^{n+i}/m^{n+i+1}) = te.$$
As \(\text{length}(m^n/m^{n+1}) \) is less than \(e \), we must have \(\text{length}(m^n/m^{n+1}) = e \). Then \(n \geq n \) \([2, 12.10]\).

On the other hand, \(x \) is superficial of degree \(t \) if and only if \(Rx = Rm^t \). As \(Rm^n = m^n \), \(Rxm^n = Rm^tm^n \) and so \(xm^n = m^{n+t} \).

2. Let \(t \) be an integer such that, for every integer \(s \geq t \), there exists in \(m^t \) a superficial element of degree \(s \). Let \(b \in m^t \) be a superficial element of degree \(t \). If \(k \) is a large integer, \(a = bk \) is superficial of degree \(s = kt \) and \(Ra = m^s \). Suppose \(n \geq n \). Then \(m^na = m^{n+s} \) by 1. If \(c \) is superficial of degree \(n + s \), then \(c = ad \) where \(d \in m^n \) is superficial of degree \(n \).

Define the homomorphism \(F: \text{End}_A(m^n) \to R \) by \(F(\phi) = \phi(d)/d \).

For every \(z \in m^n \) and \(\phi \in \text{End}_A(m^n) \), we have \(\phi(zd) = z\phi(d) = d\phi(z) \) and so \(\phi(z) = (\phi(d)/d)z \). So \(F \) is one to one. On the other hand since \(Ra = m^s \), every \(\lambda \in R \) is \(x/a \) where \(x \in m^s \). But \(am^n = m^{n+s} \); hence for every \(z \in m^n \), \(xz \) belongs to the ideal \(am^n \), so \(\lambda z \) belongs to \(m^n \). Define \(\phi \) by \(\phi(z) = \lambda z \). Then \(F(\phi) = \lambda \) and \(F \) is onto.

If \(\phi \in \text{Hom}_A(m^n, m^n+1) \), then \(\phi(d) \in m^{n+1} = Rm^{n+1} \). As \(d \) is superficial of degree \(n \), we have \(Rm^n = Rd \) and so \(\phi(d) \in Rd m \) and \(F(\phi) = \phi(d)/d \) belongs to \(Rm \).

Conversely, if \(\alpha \in Rm \), write \(\alpha = \sum \lambda_i e_i \) where \(\lambda_i \in R \) and \(e_i \in m \) to see that the element of \(\text{End}_A(m^n) \) defined by \(\phi(z) = \alpha z \) belongs to \(\text{Hom}_A(m^n, m^{n+1}) \).

References

DEPARTMENT OF MATHEMATICS, UNIVERSITÉ PAUL SABATIER, 118, ROUTE DE NARBONNE, 31400 TOULOUSE, FRANCE

Current address: 16, rue du Lycée, 92330-Sceaux, France