Point-countability and compactness

Authors:
H. H. Wicke and J. M. Worrell

Journal:
Proc. Amer. Math. Soc. **55** (1976), 427-431

DOI:
https://doi.org/10.1090/S0002-9939-1976-0400166-X

MathSciNet review:
0400166

Full-text PDF

Abstract | References | Additional Information

Abstract: We prove that if a countably compact space has an open cover such that each is in at least one but not more than countably many elements of some , then some finite subcollection of covers . We apply the theorem in proving several metrization theorems for countably compact spaces and discuss consequences of weak -refinability, a concept implicit in the statement of the theorem.

**[1]**G. Aquaro,*Point countable coverings in countably compact spaces*, General Topology and its Relations to Modern Analysis and Algebra, II (Prague, 1967), pp. 39-41.**[2]**Richard Arens and J. Dugundji,*Remark on the concept of compactness*, Portugaliae Math.**9**(1950), 141–143. MR**0038642****[3]**C. E. Aull,*A generalization of a theorem of Aquaro*, Bull. Austral. Math. Soc.**9**(1973), 105–108. MR**0372817**, https://doi.org/10.1017/S0004972700042933**[4]**Harold R. Bennett,*On quasi-developable spaces*, General Topology and Appl.**1**(1971), no. 3, 253–262. MR**0288725****[5]**H. R. Bennett and D. J. Lutzer,*A note on weak 𝜃-refinability*, General Topology and Appl.**2**(1972), 49–54. MR**0301697****[6]**Dennis K. Burke,*On 𝑝-spaces and 𝑤Δ-spaces*, Pacific J. Math.**35**(1970), 285–296. MR**0278255****[7]**Geoffrey D. Creede,*Concerning semi-stratifiable spaces*, Pacific J. Math.**32**(1970), 47–54. MR**0254799****[8]**Jean Dieudonné,*Une généralisation des espaces compacts*, J. Math. Pures Appl. (9)**23**(1944), 65–76 (French). MR**0013297****[9]**J. Donald Monk,*Introduction to set theory*, McGraw-Hill Book Co., New York-London-Sydney, 1969. MR**0286668****[10]**R. L. Moore,*Foundations of point set theory*, Revised edition. American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society, Providence, R.I., 1962. MR**0150722****[11]**M. E. Rudin, Lecture notes, Univ. of Wyoming Topology Conf. (Laramie, Wy., 1974).**[12]**Howard H. Wicke,*Open continuous images of certain kinds of 𝑀-spaces and completeness of mappings and spaces*, General Topology and Appl.**1**(1971), no. 1, 85–100. MR**0282348****[13]**-,*On spaces whose diagonal is a set of interior condensation*, Notices Amer. Math. Soc.**19**(1972), A-657. Abstract #696-54-16.**[14]**H. H. Wicke and J. M. Worrell, Jr.,*Characterizations of absolute sets of interior condensation*, Notices Amer. Math. Soc.**20**(1973), A-401. Abstract #704-G6.**[15]**H. H. Wicke and J. M. Worrell Jr.,*Topological completeness of first countable Hausdorff spaces. II*, Fund. Math.**91**(1976), no. 1, 11–27. MR**0461457**, https://doi.org/10.4064/fm-91-1-11-27**[16]**H. H. Wicke and J. M. Worrell Jr.,*A characterization of primitive bases*, Proc. Amer. Math. Soc.**50**(1975), 443–450. MR**0425922**, https://doi.org/10.1090/S0002-9939-1975-0425922-2**[17]**H. H. Wicke and J. M. Worrell Jr.,*Primitive structures in general topology*, Studies in topology (Proc. Conf., Univ. North Carolina, Charlotte, N.C., 1974; dedicated to Math. Sect. Polish Acad. Sci.), Academic Press, New York, 1975, pp. 581–599. MR**0375242****[18]**J. M. Worrell, Jr.,*A perfect mapping not preserving the*-*space property*, presented at Pittsburgh Conf. on General Topology, 1970.**[19]**J. M. Worrell Jr. and H. H. Wicke,*Characterizations of developable topological spaces*, Canad. J. Math.**17**(1965), 820–830. MR**0182945**, https://doi.org/10.4153/CJM-1965-080-3**[20]**-,*Remarks on a property of*-*refinable spaces*, Notices Amer. Math. Soc.**21**(1974), A-622. Abstract #717-G16.

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1976-0400166-X

Keywords:
(Countably) compact,
(weakly) -refinable,
(weakly) -refinable,
-space,
quasi-developable space,
-base,
-diagonal,
primitive base,
primitive structures,
diagonal a primitive set of interior condensation

Article copyright:
© Copyright 1976
American Mathematical Society