Variational sums for additive processes
HTML articles powered by AMS MathViewer
- by William N. Hudson and J. David Mason
- Proc. Amer. Math. Soc. 55 (1976), 395-399
- DOI: https://doi.org/10.1090/S0002-9939-1976-0405593-2
- PDF | Request permission
Abstract:
Let $X(t),0 \leqq t \leqq T$, be an additive process, and let ${X_{nk}}$ be the $k$th increment of $X(t)$ associated with the partition ${\Pi _n}$ of $[0,T]$. Assume $||{\Pi _n}|| \to 0$. Let $\beta$ be the Blumenthal-Getoor index of $X(T)$ and let $2 \geqq \gamma > \beta$. When the partitions are nested, $\sum \nolimits _k {|{X_{nk}}{|^\gamma }}$ converges a.s. to $\sum {\{ |J(s){|^\gamma }:0 \leqq s \leqq T\} }$, where $J(s)$ is the jump of $X(t)$ at $s$. This convergence also holds when the partitions are not nested provided either $X(t)$ has stationary increments or $1 \geqq \gamma > \beta$. This extends a result of P. W. Millar and completes a result of S. M. Berman.References
- Simeon M. Berman, Sign-invariant random variables and stochastic processes with sign-invariant increments, Trans. Amer. Math. Soc. 119 (1965), 216–243. MR 185651, DOI 10.1090/S0002-9947-1965-0185651-8
- William N. Hudson and Howard G. Tucker, Limit theorems for variational sums, Trans. Amer. Math. Soc. 191 (1974), 405–426. MR 358928, DOI 10.1090/S0002-9947-1974-0358928-6
- P. W. Millar, Path behavior of processes with stationary independent increments, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 17 (1971), 53–73. MR 324781, DOI 10.1007/BF00538475
- Itrel Monroe, On the $\gamma$-variation of processes with stationary independent increments, Ann. Math. Statist. 43 (1972), 1213–1220. MR 312578, DOI 10.1214/aoms/1177692473
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 55 (1976), 395-399
- MSC: Primary 60J30
- DOI: https://doi.org/10.1090/S0002-9939-1976-0405593-2
- MathSciNet review: 0405593