Hyperfiniteness and the Halmos-Rohlin theorem for nonsingular Abelian actions
HTML articles powered by AMS MathViewer
- by J. Feldman and D. A. Lind
- Proc. Amer. Math. Soc. 55 (1976), 339-344
- DOI: https://doi.org/10.1090/S0002-9939-1976-0409764-0
- PDF | Request permission
Abstract:
Theorem 1. Let the countable abelian group $G$ act nonsingularly and aperiodically on Lebesgue space $(X,\mu )$. Then for each finite subset $A \subset G$ and $\varepsilon > 0\exists$ finite $B \subset G$ and $F \subset X$ with $\{ bF:b \in B\}$ disjoint and $\mu [({ \cap _{a \in A}}B - a)F] > 1 - \varepsilon$. Theorem 2. Every nonsingular action of a countable abelian group on a Lebesgue space is hyperfinite.References
- J. P. Conze, Entropie d’un groupe abélien de transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 25 (1972/73), 11–30 (French). MR 335754, DOI 10.1007/BF00533332
- H. A. Dye, On groups of measure preserving transformations. I, Amer. J. Math. 81 (1959), 119–159. MR 131516, DOI 10.2307/2372852
- H. A. Dye, On groups of measure preserving transformations. II, Amer. J. Math. 85 (1963), 551–576. MR 158048, DOI 10.2307/2373108
- Yitzhak Katznelson and Benjamin Weiss, Commuting measure-preserving transformations, Israel J. Math. 12 (1972), 161–173. MR 316680, DOI 10.1007/BF02764660
- Wolfgang Krieger, On non-singular transformations of a measure space. I, II, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 11 (1969), 83–97; ibid. 11 (1969), 98–119. MR 240279, DOI 10.1007/BF00531811 —, On the entropy of groups of measure preserving transformations (to appear).
- D. A. Lind, Locally compact measure preserving flows, Advances in Math. 15 (1975), 175–193. MR 382595, DOI 10.1016/0001-8708(75)90133-4
- V. A. Rohlin, On the fundamental ideas of measure theory, Mat. Sbornik N.S. 25(67) (1949), 107–150 (Russian). MR 0030584
- Shôichirô Sakai, $C^*$-algebras and $W^*$-algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60, Springer-Verlag, New York-Heidelberg, 1971. MR 0442701
- A. M. Veršik, Nonmeasurable decompositions, orbit theory, algebras of operators, Soviet Math. Dokl. 12 (1971), 1218–1222. MR 0287331 —, Appendix to Russian translation of Invariant means on topological groups and their applications, by F. P. Greenleaf.
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 55 (1976), 339-344
- MSC: Primary 28A65; Secondary 46L10
- DOI: https://doi.org/10.1090/S0002-9939-1976-0409764-0
- MathSciNet review: 0409764