QUASI-UNMIXEDNESS AND INTEGRAL CLOSURE OF REES RINGS

PETER G. SAWTELL1

ABSTRACT. For certain Rees rings R of a local domain R, the quasi-unmixedness of R is characterized in terms of a certain transform of R being contained in the integral closure of R.

1. Introduction. In this paper, a ring shall be a commutative ring with identity. The terminology is basically that of [2] and [12].

Relations between quasi-unmixedness and integral extensions are well known (e.g., [1], [5] and [7]). Also, the study of properties of a ring R via transition to a Rees ring $R = R(R, A)$ of R (conditions on the ideal A depending on the particular discussion) has often been useful. In particular, characterizations of the quasi-unmixedness of R are given in [10] in terms of localizations of R containing R as a quasi-subspace. The R-algebra $T = T(uR)$ (Definition 1) is used in [8] to characterize unmixed local domains. Here, equivalences to the quasi-unmixedness of R are given in terms of T being contained in the integral closure of R (Theorem 2).

2. Preliminary concepts. Let $B = (b_1, \ldots, b_k)R$ be an ideal in a Noetherian ring R. Let t be an indeterminant, and let $u = 1/t$. The Rees ring $R = R(R, B)$ of R with respect to B is the ring $R = R[u, tb_1, \ldots , tb_k]$. R is a graded Noetherian subring of $R[u, t]$. If (R, M) is a local ring, then $R = (M, u, tb_1, \ldots , tb_k)$ is the unique maximal homogeneous ideal of R. Similar to [12, Theorem 11, p. 157], R is a graded subring of $K[u, t]$, where K is the total quotient ring of R. (Throughout, S' will denote the integral closure of ring S.)

For an ideal B in a ring R, the integral closure of B in R, denoted B', is the set of all elements in R satisfying an equation of the form $x^n + b_1 x^{n-1} + \cdots + b_n = 0$, where $b_i \in B^i$, $i = 1, \ldots, n$. It is known [4, p. 523] that B' is an ideal in R. In particular, if $B = bR$ is a regular principal ideal, then $(bR)_a = \{r \in R; r/b \in R'\} = bR' \cap R$ [6, Lemma 1].

Definition 1. Let b be a regular nonunit in a ring R. Define $T(bR) = \{c_k/b^k; c_k \in (b^k R)^{(1)}\}$, for all large k, where $(b^k R)^{(1)}$ is the set of elements of R that are in each height one primary component of $b^k R$.

Remark. The following are shown in [11].

(1) $T(bR)$ is contained in R' if and only if each height one prime divisor of

Received by the editors July 16, 1973.

Key words and phrases. Local ring, quasi-unmixed, integral closure, Rees ring.

1 This paper contains part of the author's doctoral dissertation written at the University of California at Riverside under the direction of Professor Louis J. Ratliff, Jr.

© American Mathematical Society 1976
bR' contracts to a height one prime (divisor of bR) in R.

(2) $b^nT(bR)$ is a finite intersection of height one primary ideals. Also $b^nT(bR) \cap R = (b^nR)^{(1)}$.

(3) Define $R^{(1)} = \cap \{R(P); P$ is a height one prime divisor of a principal ideal generated by a nonzero divisor in $R\}$, where (P) denotes the set of regular elements in $R - P$. Then $T(bR) = R[1/b] \cap R^{(1)}$.

3. Characterizations of quasi-unmixed local domains. Several preliminary results on completions are given to show that the condition $T \subseteq R'$ is equivalent to a similar condition for the completion R^* of R (Corollary 1). This is used to give equivalences to the quasi-unmixedness of a local domain (Theorem 2).

Lemma 1. Let B be an M-primary ideal of a local ring (R, M). Let $R = R(R, B)$. Let p be a prime ideal of R with $uR \subseteq p$. Then $(M, u)R \subseteq p$, and so all prime ideals containing uR lie over M.

Proof. Since u is in p, $B = uR \cap R \subseteq p \cap R$. But B is M-primary, so $M \subseteq p \cap R$, i.e., $M = p \cap R$. Q.E.D.

Lemma 2. Let R be as in Lemma 1 and $S = R(R^*, BR^*)$. Let R (resp., R') be the maximal homogeneous ideal of R (resp., S), and let R^* (resp., S^*) be the completion of R (resp., S) with respect to the M (resp., M')-adic topology. Then $R^* = S^*$ is the completion $(R_{R'})^* = (S_{S'})^*$ of $R_{R'}$ and $S_{S'}$.

Proof. $R_{R'}$ is a dense subspace of $S_{S'}$ [8, Lemma 3.2] and R^* (resp., S^*) is the natural completion of $R_{R'}$ (resp., $S_{S'}$) [3, Theorem 32, p. 434]. Q.E.D.

Lemma 3. Let R, R^*, B, R and S be as in Lemma 2. Also, assume that B is generated by a system of parameters. Let $T = T(uR)$ and $T^* = T(uS)$. Then $N = (M, u)R((M, u)R) \cap T$ (resp., $N^* = (M^*, u)R((M^*, u)R) \cap T^*$) is the only prime divisor of uR (resp., uS^*).

Proof. By [8, Remark 3.10(ii)], $(M, u)R$ is the only height one prime divisor of uR. By the one-to-one correspondence (and denseness) in [8, Lemma 3.2], $(M^*, u)S = (M, u)S^*$ is the only height one prime divisor of uS, and by the one-to-one correspondence in [11, Lemma 2(9)], N (resp., N^*) is the only height one prime divisor of uT (resp., uT^*). By Remark (2), this ideal has no imbedded prime divisors. Q.E.D.

Theorem 1. With the notation of Lemma 2, let $p \subseteq P$ be an inclusion of prime ideals in R with $u \in p$. Then the following statements hold:

(1) R/p is a locally unmixed, pseudo-geometric domain [2, p. 131].

(2) pR_p^* is a semiprime, unmixed ideal in the completion R_p^* of R^*_p.

(3) In the completion R_p^* of R_p, pR_p^* has pure height equal to height p and has pure depth equal to depth pR_p^*.

(4) $pR_p^* = pS^*$ has pure height equal to height p, where p is contained in the maximal homogeneous ideal of R.

Proof. Since $p \cap R = M$ (Lemma 1), $R/p = R/M[u^*, (tB)^*]$, where X^* denotes X modulo p. Thus R/p is finitely generated as a ring over the field...
QUASI-UNMIXEDNESS AND INTEGRAL CLOSURE OF REES RINGS

R/M, and so is locally unmixed [2, (34.9)], and pseudo-geometric [2, (36.5)].
This shows (1). By localizing to R_p, (2) follows from [2, (36.4)] and (1).

For (3), since pR_p is an unmixed ideal (by (2)), it has pure depth equal to
depth $pR_p = depth pR$. Since pR_p is semiprime, that it has pure height
equal to height p follows from [2, (22.9)]. (4) is a special case of (3) since
$R^*_R = R^* = S^*$ by Lemma 2. Q.E.D.

Corollary 1. Let the notation be as in Lemma 2. Then $\mathcal{I}(uR) \subseteq R'$ if and
only if $\mathcal{I}(uS) \subseteq S'$.

Proof. Since $(u^nR)_a = u^nR \cap R$ and R' and R are graded subrings of
$K[u, t]$, it follows that $(u^nR)_a$ is a homogeneous ideal in R. Therefore, every
prime divisor of $(u^nR)_a$, for $n \geq 1$, and every prime divisor of the homo-
geous ideal uR is contained in the maximal homogeneous ideal \mathfrak{m} of R. By
[11, Lemma 4(2)], $\mathcal{I}(uR_{R\mathfrak{m}}) \subseteq R_{R\mathfrak{m}}$ if and only if $\mathcal{I}(uR) \subseteq R'$. Now, let P
be a height one prime divisor of $uR_{R\mathfrak{m}}$, and $p = P \cap R$. Then $P_{R\mathfrak{m}} = P^*$
has pure height one (Theorem 1(4)). Therefore, by [11, Corollary 2], $\mathcal{I}(uR_{R\mathfrak{m}})$
$\subseteq R^*_R$ if and only if $\mathcal{I}(uR^*_R) \subseteq R^*_R$. But $R^*_R = (S^*_R)^*$ so the last inclusion
is equivalent to $\mathcal{I}(uS_{R\mathfrak{m}})^* \subseteq (S^*_R)^*$. As above, this is equivalent to $\mathcal{I}(uS_{R\mathfrak{m}})$
$\subseteq (S^*_R)^*$, which, again as above, is equivalent to $\mathcal{I}(uS) \subseteq S'$. Q.E.D.

Lemma 4. Let b be a regular nonunit in a Noetherian ring R and q a minimal
prime divisor of zero in R'. Then there exists a height one prime divisor P of bR'
that contains q.

Proof. In R', let $Z = \text{rad } (0) = \bigcap_{i=1}^n q_i (q_1 = q)$. Since $Z \subseteq bR'$ [9,
Lemma 2.4], we may pass to $R'/Z = \overline{R}$. \overline{R} is the direct sum of Krull domains
$\oplus_{i=1}^n R'/q_i = \oplus_{i=1}^n \overline{R}e_i$, where the e_i are the associated orthogonal idempo-
tents. A height one prime divisor p_1 of be_1 in $\overline{R}e_1$ gives rise to the desired P.
Q.E.D.

Theorem 2 (cf. [8, Theorem 5.17]). Let (R, M) be a local domain of altitude
$n \geq 1$. Then the following statements are equivalent:

(1) R is quasi-unmixed.
(2) For every finitely generated domain A over R, and for each multiplicatively
closed subset S of A, $(A_S)^{(1)} \subseteq A_S'$.
(3) For every ideal B in R, $\mathcal{I}(uR) \subseteq R'$, where $R = R(R, B)$.
(4) There exists an M-primary ideal B in R that is generated by a system of
parameters such that $\mathcal{I}(uR) \subseteq R'$, where $R = R(R, B)$.

Proof. (1 \Rightarrow 2). By [11, Lemma 1(3) and (5)], it is sufficient to show
$A^{(1)} \subseteq A'$. By [5, Corollary 2.5], A is locally quasi-unmixed. Then, by [7,
Theorem 3.8], each height one prime ideal in A' contracts to a height one
prime in A. Thus, by [8, Corollary 5.7], $A^{(1)} \subseteq A'$.
(2 \Rightarrow 3). Since R is a finite extension of R, $R^{(1)} \subseteq R'$, by hypothesis. And,
$\mathcal{I}(uR) \subseteq R^{(1)}$.
(3 \Rightarrow 4) is obvious.
(4 \Rightarrow 1). Let B be an M-primary ideal of R generated by a system of
parameters. Let $S = R^*(R, BR^*)$ and $\mathcal{I}^* = \mathcal{I}(uS)$ (R^* is the completion of
$S = R(R^*, BR^*)$ and $\mathcal{I}^* = \mathcal{I}(uS)$ (R^* is the completion of
Let q be a minimal prime divisor of zero in S. Let q' be the minimal prime divisor of zero in S' that lies over q (S and S' have the same total quotient ring). By Lemma 4, there exists a height one prime divisor p' of uS' that contains q'. By Remark 1, $p' \cap S = p$ is a height one prime divisor of uS. Hence, $q \subseteq p = (M^*, u)S$ (Lemma 3). Since q was an arbitrary minimal prime divisor of zero in S, R is quasi-unmixed [10, Corollary 9]. Q.E.D.

By combining Theorem 2 and the Remark, further characterizations of the quasi-unmixedness of R can be obtained.

Bibliography