Strongly homogeneous torsion free abelian groups of finite rank
HTML articles powered by AMS MathViewer
- by David M. Arnold
- Proc. Amer. Math. Soc. 56 (1976), 67-72
- DOI: https://doi.org/10.1090/S0002-9939-1976-0399305-9
- PDF | Request permission
Abstract:
An abelian group is strongly homogeneous if for any two pure rank 1 subgroups there is an automorphism sending one onto the other. Finite rank torsion free strongly homogeneous groups are characterized as the tensor product of certain subrings of algebraic number fields with finite direct sums of isomorphic subgroups of $Q$, the additive group of rationals. If $G$ is a finite direct sum of finite rank torsion free strongly homogeneous groups, then any two decompositions of $G$ into a direct sum of indecomposable subgroups are equivalent.References
- D. M. Arnold and E. L. Lady, Endomorphism rings and direct sums of torsion free abelian groups, Trans. Amer. Math. Soc. 211 (1975), 225–237. MR 417314, DOI 10.1090/S0002-9947-1975-0417314-1
- D. Arnold, C. I. Vinsonhaler, and W. J. Wickless, Quasi-pure projective and injective torsion free abelian groups of rank $2$, Rocky Mountain J. Math. 6 (1976), no. 1, 61–70. MR 444799, DOI 10.1216/RMJ-1976-6-1-61
- László Fuchs, Infinite abelian groups. Vol. II, Pure and Applied Mathematics. Vol. 36-II, Academic Press, New York-London, 1973. MR 0349869
- Irving Kaplansky, Commutative rings, Allyn and Bacon, Inc., Boston, Mass., 1970. MR 0254021
- C. E. Murley, The classification of certain classes of torsion free Abelian groups, Pacific J. Math. 40 (1972), 647–655. MR 322077
- James D. Reid, On the ring of quasi-endomorphisms of a torsion-free group, Topics in Abelian Groups (Proc. Sympos., New Mexico State Univ., 1962) Scott, Foresman & Co., Chicago, Ill., 1963, pp. 51–68. MR 0169915
- Fred Richman, A class of rank-$2$ torsion free groups, Studies on Abelian Groups (Symposium, Montpellier, 1967) Springer, Berlin, 1968, pp. 327–333. MR 0244380 P. Samuel, Théorie algébrique des nombres, Hermann, Paris, 1967; English transl., Houghton-Mifflin, Boston, Mass., 1970. MR35 #6643; 42 #177.
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 56 (1976), 67-72
- DOI: https://doi.org/10.1090/S0002-9939-1976-0399305-9
- MathSciNet review: 0399305