$L^{2}(G_{Q}\backslash G_{A})$ is not always multiplicity-free
HTML articles powered by AMS MathViewer
- by Lawrence Corwin
- Proc. Amer. Math. Soc. 56 (1976), 329-332
- DOI: https://doi.org/10.1090/S0002-9939-1976-0399370-9
- PDF | Request permission
Abstract:
We show that there are solvable adelic groups ${G_{\mathbf {A}}}$ whose action on ${L^2}({G_{\mathbf {Q}}}\backslash {G_{\mathbf {A}}}),{G_{\mathbf {Q}}}\backslash {G_{\mathbf {A}}}$ compact, it is not multiplicity-free.References
- Armand Borel, Linear algebraic groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. Notes taken by Hyman Bass. MR 0251042
- J. Brezin, Function theory on metabelian solvmanifolds, J. Functional Analysis 10 (1972), 33–51. MR 0348401, DOI 10.1016/0022-1236(72)90056-0
- J. W. S. Cassels and A. Fröhlich (eds.), Algebraic number theory, Academic Press, London; Thompson Book Co., Inc., Washington, D.C., 1967. MR 0215665
- L. Corwin and F. P. Greenleaf, Intertwining operators for representations induced from uniform subgroups, Acta Math. 136 (1976), no. 3-4, 275–301. MR 425009, DOI 10.1007/BF02392047
- George W. Mackey, Imprimitivity for representations of locally compact groups. I, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 537–545. MR 31489, DOI 10.1073/pnas.35.9.537
- George W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265–311. MR 98328, DOI 10.1007/BF02392428
- Calvin C. Moore, Decomposition of unitary representations defined by discrete subgroups of nilpotent groups, Ann. of Math. (2) 82 (1965), 146–182. MR 181701, DOI 10.2307/1970567 J.-P. Serre, Cohomologie galoisienne, 2nd ed., Lecture Notes in Math., vol. 5, Springer-Verlag, Berlin and New York, 1964. MR 31 #4785.
- André Weil, Basic number theory, Die Grundlehren der mathematischen Wissenschaften, Band 144, Springer-Verlag New York, Inc., New York, 1967. MR 0234930, DOI 10.1007/978-3-662-00046-5
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 56 (1976), 329-332
- MSC: Primary 22E55
- DOI: https://doi.org/10.1090/S0002-9939-1976-0399370-9
- MathSciNet review: 0399370