The existence of conjugate points for selfadjoint differential equations of even order
HTML articles powered by AMS MathViewer
- by Roger T. Lewis
- Proc. Amer. Math. Soc. 56 (1976), 162-166
- DOI: https://doi.org/10.1090/S0002-9939-1976-0399576-9
- PDF | Request permission
Abstract:
This paper presents sufficient conditions on the coefficents of ${L_{2n}}y = \Sigma _{k = 0}^n{( - 1)^{n - k}}{({p_k}{y^{(n - k)}})^{(n - k)}}$ which insure that ${L_{2n}}y = 0$ has conjugate points $\eta (a)$ for all $a > 0$. The main theorem implies that ${( - 1)^n}{y^{(2n)}} + py = 0$ has conjugate points $\eta (a)$ for all $a > 0$ when ${\smallint ^\infty }{x^\alpha }p(x)dx = - \infty$ for some $\alpha < 2n - 1$ with no sign restrictions on $p(x)$.References
- Calvin D. Ahlbrandt, Disconjugacy criteria for self-adjoint differential systems, J. Differential Equations 6 (1969), 271–295. MR 244541, DOI 10.1016/0022-0396(69)90018-7
- John H. Barrett, Oscillation theory of ordinary linear differential equations, Advances in Math. 3 (1969), 415–509. MR 257462, DOI 10.1016/0001-8708(69)90008-5
- John S. Bradley, Conditions for the existence of conjugate points for a fourth order linear differential equation, SIAM J. Appl. Math. 17 (1969), 984–991. MR 252753, DOI 10.1137/0117086
- W. A. Coppel, Disconjugacy, Lecture Notes in Mathematics, Vol. 220, Springer-Verlag, Berlin-New York, 1971. MR 0460785
- I. M. Glazman, Direct methods of qualitative spectral analysis of singular differential operators, Daniel Davey & Co., Inc., New York, 1966. Translated from the Russian by the IPST staff; Israel Program for Scientific Translations, Jerusalem, 1965. MR 0190800
- Einar Hille, Non-oscillation theorems, Trans. Amer. Math. Soc. 64 (1948), 234–252. MR 27925, DOI 10.1090/S0002-9947-1948-0027925-7
- Don B. Hinton, A criterion for $n-n$ oscillations in differential equations of order $2n$, Proc. Amer. Math. Soc. 19 (1968), 511–518. MR 226111, DOI 10.1090/S0002-9939-1968-0226111-3 K. Kreith, Oscillation theory, Lecture Notes in Math., vol. 324, Springer-Verlag, New York, 1973.
- Walter Leighton and Zeev Nehari, On the oscillation of solutions of self-adjoint linear differential equations of the fourth order, Trans. Amer. Math. Soc. 89 (1958), 325–377. MR 102639, DOI 10.1090/S0002-9947-1958-0102639-X
- Roger T. Lewis, Oscillation and nonoscillation criteria for some self-adjoint even order linear differential operators, Pacific J. Math. 51 (1974), 221–234. MR 350112
- Roger T. Lewis, The oscillation of fourth order linear differential operators, Canadian J. Math. 27 (1975), 138–145. MR 361279, DOI 10.4153/CJM-1975-017-4
- Richard A. Moore, The behavior of solutions of a linear differential equation of second order, Pacific J. Math. 5 (1955), 125–145. MR 68690
- William T. Reid, Riccati matrix differential equations and non-oscillation criteria for associated linear differential systems, Pacific J. Math. 13 (1963), 665–685. MR 155049
- William T. Reid, Oscillation criteria for self-adjoint differential systems, Trans. Amer. Math. Soc. 101 (1961), 91–106. MR 133518, DOI 10.1090/S0002-9947-1961-0133518-X
- Jerry R. Ridenhour, On $(n,\,n)$-zeros of solutions of linear differential equations of order $2n$, Proc. Amer. Math. Soc. 44 (1974), 135–140. MR 330630, DOI 10.1090/S0002-9939-1974-0330630-1
- C. A. Swanson, Comparison and oscillation theory of linear differential equations, Mathematics in Science and Engineering, Vol. 48, Academic Press, New York-London, 1968. MR 0463570
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 56 (1976), 162-166
- DOI: https://doi.org/10.1090/S0002-9939-1976-0399576-9
- MathSciNet review: 0399576