Two counterexamples in semigroup theory on Hilbert space
HTML articles powered by AMS MathViewer
- by Paul R. Chernoff
- Proc. Amer. Math. Soc. 56 (1976), 253-255
- DOI: https://doi.org/10.1090/S0002-9939-1976-0399952-4
- PDF | Request permission
Abstract:
There exist $({C_0})$ semigroups ${T_1}(t),{T_2}(t)$ on Hilbert space with the following properties: ${T_1}$ has a bounded generator and is uniformly bounded, but is not similar to a contraction semigroup. ${T_2}$ is uniformly bounded, and there exists no scalar $\alpha$ such that ${e^{ - \alpha t}}{T_2}(t)$ is similar to a contraction semigroup.References
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523 J. A. Goldstein, Contraction semigroups on Hilbert space, Notices Amer. Math. Soc. 21 (1974), A338-A339. Abstract #712-B6. —, A problem concerning semigroups on Hilbert space, Tulane Uni v., October, 1974 (preprint).
- Heinz-Otto Kreiss, Über Matrizen die beschränkte Halbgruppen erzeugen, Math. Scand. 7 (1959), 71–80 (German). MR 110952, DOI 10.7146/math.scand.a-10563
- Edward W. Packel, A semigroup analogue of Foguel’s counterexample, Proc. Amer. Math. Soc. 21 (1969), 240–244. MR 238124, DOI 10.1090/S0002-9939-1969-0238124-7
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 56 (1976), 253-255
- DOI: https://doi.org/10.1090/S0002-9939-1976-0399952-4
- MathSciNet review: 0399952