Counterexamples in best approximation
HTML articles powered by AMS MathViewer
- by S. J. Poreda
- Proc. Amer. Math. Soc. 56 (1976), 167-171
- DOI: https://doi.org/10.1090/S0002-9939-1976-0402362-4
- PDF | Request permission
Abstract:
Several counterexamples for approximation to continuous functions by polynomials are given. One example shows that the points of maximum deviation of a continuous real valued function on an interval from its polynomial of degree $n$ of best uniform approximation can lie on any monotone sequence contained in that interval for infinitely many $n$.References
- M. Ĭ. Kadec′, On the distribution of points of maximum deviation in the approximation of continuous functions by polynomials, Uspehi Mat. Nauk 15 (1960), no. 1 (91), 199–202 (Russian). MR 0113079
- V. I. Smirnov and N. A. Lebedev, Konstruktivnaya teoriya funktsiĭ kompleksnogo peremennogo, Izdat. “Nauka”, Moscow, 1964 (Russian). MR 0171926
- Harold S. Shapiro, Topics in approximation theory, Lecture Notes in Mathematics, Vol. 187, Springer-Verlag, Berlin-New York, 1971. With appendices by Jan Boman and Torbjörn Hedberg. MR 0437981
- S. J. Poreda, A characterization of badly approximable functions, Trans. Amer. Math. Soc. 169 (1972), 249–256. MR 306510, DOI 10.1090/S0002-9947-1972-0306510-7
- S. J. Poreda, Approximation by $\delta$-polynomials, SIAM J. Numer. Anal. 10 (1973), 50–54. MR 316718, DOI 10.1137/0710007
- W. Wolibner, Sur un polynôme d’interpolation, Colloq. Math. 2 (1951), 136–137 (French). MR 43946, DOI 10.4064/cm-2-2-136-137
- Günter Meinardus, Approximation of functions: Theory and numerical methods, Expanded translation of the German edition, Springer Tracts in Natural Philosophy, Vol. 13, Springer-Verlag New York, Inc., New York, 1967. Translated by Larry L. Schumaker. MR 0217482
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 56 (1976), 167-171
- MSC: Primary 41A50; Secondary 30A82
- DOI: https://doi.org/10.1090/S0002-9939-1976-0402362-4
- MathSciNet review: 0402362