## Finite operators and amenable $C^\ast$-algebras

HTML articles powered by AMS MathViewer

- by John W. Bunce PDF
- Proc. Amer. Math. Soc.
**56**(1976), 145-151 Request permission

## Abstract:

In this paper we prove that the ${C^\ast }$-algebra generated by the left regular representation of a discrete group is amenable if and only if the group is amenable. Theorems concerning finite operators and the relationship between finite operators and amenable ${C^\ast }$-algebras are proved.## References

- John Bunce,
*Characterizations of amenable and strongly amenable $C^{\ast }$-algebras*, Pacific J. Math.**43**(1972), 563–572. MR**320764**, DOI 10.2140/pjm.1972.43.563 - John W. Bunce and James A. Deddens,
*Subspace approximants and GCR operators*, Indiana Univ. Math. J.**24**(1974/75), 341–349. MR**350473**, DOI 10.1512/iumj.1974.24.24030 - Jacques Dixmier,
*Les $C^{\ast }$-algèbres et leurs représentations*, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964 (French). MR**0171173** - Edward G. Effros and Frank Hahn,
*Locally compact transformation groups and $C^{\ast }$- algebras*, Memoirs of the American Mathematical Society, No. 75, American Mathematical Society, Providence, R.I., 1967. MR**0227310** - Frederick P. Greenleaf,
*Invariant means on topological groups and their applications*, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York-Toronto, Ont.-London, 1969. MR**0251549** - Barry Edward Johnson,
*Cohomology in Banach algebras*, Memoirs of the American Mathematical Society, No. 127, American Mathematical Society, Providence, R.I., 1972. MR**0374934** - Christopher Lance,
*On nuclear $C^{\ast }$-algebras*, J. Functional Analysis**12**(1973), 157–176. MR**0344901**, DOI 10.1016/0022-1236(73)90021-9 - Carl Pearcy and Norberto Salinas,
*Finite-dimensional representations of separable $C^{\ast }$-algebras*, Bull. Amer. Math. Soc.**80**(1974), 970–972. MR**377527**, DOI 10.1090/S0002-9904-1974-13601-3 - J. R. Ringrose,
*Automatic continuity of derivations of operator algebras*, J. London Math. Soc. (2)**5**(1972), 432–438. MR**374927**, DOI 10.1112/jlms/s2-5.3.432 - Teishirô Saitô,
*Generations of von Neumann algebras*, Lectures on operator algebras (dedicated to the memory of David M. Topping; Tulane Univ. Ring and Operator Theory Year, 1970–1971, Vol. II), Lecture Notes in Math., Vol. 247, Springer, Berlin, 1972, pp. 435–531. MR**0377542** - Shôichirô Sakai,
*$C^*$-algebras and $W^*$-algebras*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60, Springer-Verlag, New York-Heidelberg, 1971. MR**0442701** - J. T. Schwartz,
*$W^{\ast }$-algebras*, Gordon and Breach Science Publishers, New York-London-Paris, 1967. MR**0232221** - Joseph G. Stampfli,
*Derivations on ${\cal B}({\cal H})$: the range*, Illinois J. Math.**17**(1973), 518–524. MR**318914**
D. Topping, - J. P. Williams,
*Finite operators*, Proc. Amer. Math. Soc.**26**(1970), 129–136. MR**264445**, DOI 10.1090/S0002-9939-1970-0264445-6 - J. P. Williams,
*On the range of a derivation*, Pacific J. Math.**38**(1971), 273–279. MR**308809**, DOI 10.2140/pjm.1971.38.273

*Lectures on von Neumann algebras*, Van Nostrand Reinhold, London, 1971.

## Additional Information

- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**56**(1976), 145-151 - MSC: Primary 46L05; Secondary 47C05
- DOI: https://doi.org/10.1090/S0002-9939-1976-0402514-3
- MathSciNet review: 0402514