Conditions for the commutativity of semigroups
HTML articles powered by AMS MathViewer
- by G. Kowol
- Proc. Amer. Math. Soc. 56 (1976), 85-88
- DOI: https://doi.org/10.1090/S0002-9939-1976-0404492-X
- PDF | Request permission
Abstract:
Let $S$ be a semigroup. Then by a theorem of Tully [7]: $S$ is a commutative semigroup iff $ab = {b^n}{a^m}$ for all $a,b \in S$ ($m,n \geqslant 1$, fixed). We prove the following: $S$ is a commutative semigroup iff $ab = {b^{n(a,b)}}{a^{m(a,b)}}$ for all $a,b \in S$, where one of the exponents $n(a,b)$ and $m(a,b)$ is constant and the other is independent of $a$ or $b$.References
- Marshall Hall Jr., The theory of groups, The Macmillan Company, New York, N.Y., 1959. MR 0103215
- E. S. Ljapin, Semigroups, Translations of Mathematical Monographs, Vol. 3, American Mathematical Society, Providence, R.I., 1963. MR 0167545
- Hans Lausch, Wilfried Nöbauer, and Fritz Schweiger, Polynompermutationen auf Gruppen. II, Monatsh. Math. 70 (1966), 118–126 (German). MR 193135, DOI 10.1007/BF01297266
- Mario Petrich, Introduction to semigroups, Merrill Research and Lecture Series, Charles E. Merrill Publishing Co., Columbus, Ohio, 1973. MR 0393206
- Mohan S. Putcha and Julian Weissglass, Semigroups satisfying variable identities, Semigroup Forum 3 (1971/72), no. 1, 64–67. MR 289693, DOI 10.1007/BF02572943
- Takayuki Tamura, Semigroups satisfying identity $xy=f(x,\,y)$, Pacific J. Math. 31 (1969), 513–521. MR 260908 E. J. Tully, Semigroups satisfying an identity of the form $xy = {y^m}{x^n}$ (unpublished manuscript).
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 56 (1976), 85-88
- MSC: Primary 20M10
- DOI: https://doi.org/10.1090/S0002-9939-1976-0404492-X
- MathSciNet review: 0404492