Weak convergence of semigroups implies strong convergence of weighted averages
HTML articles powered by AMS MathViewer
- by Humphrey Fong
- Proc. Amer. Math. Soc. 56 (1976), 157-161
- DOI: https://doi.org/10.1090/S0002-9939-1976-0405133-8
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 61 (1976), 186.
Abstract:
For a fixed $p,1 \leqslant p < \infty$, let $\{ {T_t}:t > 0\}$ be a strongly continuous semigroup of positive contractions on ${L_p}$ of a $\sigma$-finite measure space. We show that weak convergence of $\{ {T_t}:t > 0\}$ in ${L_p}$ is equivalent with the strong convergence of the weighted averages $\int _0^\infty {{T_t}f{\mu _n}(dt)(n \to \infty )}$ for every $f \in {L_p}$ and every sequence $({\mu _n})$ of signed measures on $(0,\infty )$, satisfying ${\sup _n}||{\mu _n}|| < \infty ;{\lim _n}{\mu _n}(0,\infty ) = 1$; and for each $d > 0,{\lim _n}{\sup _{c \geqslant 0}}|{\mu _n}|(c,c + d] = 0$. The positivity assumption is not needed if $p = 1$ or 2. We show that such a result can be deduced-not only in ${L_p}$, but in general Banach spaces-from the corresponding discrete parameter version of the theorem.References
- M. Akcoglu and L. Sucheston, On operator convergence in Hilbert space and in Lebesgue space, Period. Math. Hungar. 2 (1972), 235–244. MR 326433, DOI 10.1007/BF02018664 —, On convergence of iterates of positive contractions in ${L_p}$ spaces, J. Approximation Theory (to appear).
- M. A. Akcoglu and L. Sucheston, On weak and strong convergence of positive contractions in $L_{p}$ spaces, Bull. Amer. Math. Soc. 81 (1975), 105–106. MR 360998, DOI 10.1090/S0002-9904-1975-13655-X
- J. R. Blum and D. L. Hanson, On the mean ergodic theorem for subsequences, Bull. Amer. Math. Soc. 66 (1960), 308–311. MR 118803, DOI 10.1090/S0002-9904-1960-10481-8
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- H. Fong and L. Sucheston, On a mixing property of operators in $L_{p}$ spaces, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 28 (1973/74), 165–171. MR 367152, DOI 10.1007/BF00533366
- D. L. Hanson and Gordon Pledger, On the mean ergodic theorem for weighted averages, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 13 (1969), 141–149. MR 254214, DOI 10.1007/BF00537020
- Lee Jones and Velimir Kuftinec, A note on the Blum-Hanson theorem, Proc. Amer. Math. Soc. 30 (1971), 202–203. MR 281023, DOI 10.1090/S0002-9939-1971-0281023-4
- Michael Lin, Mixing for Markov operators, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 19 (1971), 231–242. MR 309207, DOI 10.1007/BF00534111
- Ry\B{o}tar\B{o} Sat\B{o}, A note on operator convergence for semigroups, Comment. Math. Univ. Carolinae 15 (1974), 127–129. MR 341140
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 56 (1976), 157-161
- MSC: Primary 47A35; Secondary 28A65
- DOI: https://doi.org/10.1090/S0002-9939-1976-0405133-8
- MathSciNet review: 0405133