Symmetric overmaps
HTML articles powered by AMS MathViewer
- by J. L. Noakes
- Proc. Amer. Math. Soc. 56 (1976), 333-336
- DOI: https://doi.org/10.1090/S0002-9939-1976-0405408-2
- PDF | Request permission
Abstract:
We prove periodicity theorems for the degrees of fibre-preserving maps of sphere bundles, and of projective space bundles.References
- Albrecht Dold, Homology of symmetric products and other functors of complexes, Ann. of Math. (2) 68 (1958), 54–80. MR 97057, DOI 10.2307/1970043 H. Hopf, Über die Abbildunger von Sphären auf Sphären niedrigerer Dimension, Fund. Math. 25 (1935), 427-440.
- I. M. James, Symmetric functions of several variables, whose range and domain is a sphere, Bol. Soc. Mat. Mexicana (2) 1 (1956), 85–88. MR 98375
- I. M. James, Ex-homotopy theory. I, Illinois J. Math. 15 (1971), 324–337. MR 296945
- I. M. James, Emery Thomas, H. Toda, and G. W. Whitehead, On the symmetric square of a sphere, J. Math. Mech. 12 (1963), 771–776. MR 0154282 J. L. Noakes, Some topics in homotopy theory, D. Phil. Thesis, University of Oxford, 1974, pp. 1-63. —, Self-maps of sphere bundles (in preparation).
- Seiya Sasao, On degrees of mapping, J. London Math. Soc. (2) 8 (1974), 385–392. MR 365555, DOI 10.1112/jlms/s2-8.3.385
- Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR 0039258
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 56 (1976), 333-336
- MSC: Primary 55C25
- DOI: https://doi.org/10.1090/S0002-9939-1976-0405408-2
- MathSciNet review: 0405408