Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on some properties of $A$-functions


Author: H. Sarbadhikari
Journal: Proc. Amer. Math. Soc. 56 (1976), 321-324
MSC: Primary 26A42
DOI: https://doi.org/10.1090/S0002-9939-1976-0407213-X
MathSciNet review: 0407213
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This note deals with $({\mathbf {M}},\ast )$ functions for various families ${\mathbf {M}}$. It is shown that if ${\mathbf {M}}$ is the family of Borel sets of additive class $\alpha$ on a metric space $X$, then $({\mathbf {M}},\ast )$ functions are just the functions of the form ${\sup _y}g(x,y)$ where $g:X \times R \to R$ is continuous in $y$ and of class $\alpha$ in $x$. If ${\mathbf {M}}$ is the class of analytic sets in a Polish space $X$, then the $({\mathbf {M}},\ast )$ functions dominating a Borel function are just the functions ${\sup _y}g(x,y)$ where $g$ is a real valued Borel function on ${X^2}$. It is also shown that there is an $A$-function $f$ defined on an uncountable Polish space $X$ and an analytic subset $C$ of the real line such that ${f^{ - 1}}(C) \notin$ the $\sigma$-algebra generated by the analytic sets on $X$.


References [Enhancements On Off] (What's this?)

    Felix Hausdorff, Mengenlehre, de Gruyter, Berlin, 1937; English transl., Set theory, Chelsea, New York, 1957. MR 19, 111. K. Kunugui, Sur un thĂ©orĂšme d’existence dans la thĂ©orie des ensembles projectifs, Fund. Math. 29 (1937), 167-181.
  • K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; PaƄstwowe Wydawnictwo Naukowe, Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
  • E. SĂ©livanowski, Sur une classe d’ensembles dĂ©finis par une infinitĂ© dĂ©nombrable de conditions, C.R. Acad. Sci. Paris 184 (1927), 1311.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26A42

Retrieve articles in all journals with MSC: 26A42


Additional Information

Keywords: <!– MATH $({\mathbf {M}},\ast )$ –> <IMG WIDTH="62" HEIGHT="41" ALIGN="MIDDLE" BORDER="0" SRC="images/img5.gif" ALT="$({\mathbf {M}},\ast )$"> functions, <IMG WIDTH="21" HEIGHT="20" ALIGN="BOTTOM" BORDER="0" SRC="images/img2.gif" ALT="$A$">-functions, <IMG WIDTH="19" HEIGHT="20" ALIGN="BOTTOM" BORDER="0" SRC="images/img3.gif" ALT="$\alpha$">-functions, complete ordinary function system, functions of class <IMG WIDTH="19" HEIGHT="20" ALIGN="BOTTOM" BORDER="0" SRC="images/img1.gif" ALT="$\alpha$">, operation <IMG WIDTH="21" HEIGHT="20" ALIGN="BOTTOM" BORDER="0" SRC="images/img4.gif" ALT="$A$">
Article copyright: © Copyright 1976 American Mathematical Society