On $\mathrm {hom} \dim M \mathrm {U}_* (X\times Y)$
HTML articles powered by AMS MathViewer
- by Duane O’Neill
- Proc. Amer. Math. Soc. 56 (1976), 288-290
- DOI: https://doi.org/10.1090/S0002-9939-1976-0407831-9
- PDF | Request permission
Abstract:
Let $p$ be a prime and $B{\mathbf {Z}}/p$ the classifying space for the cyclic group ${\mathbf {Z}}/p$ of prime order $p$. A finite complex $X$ is constructed such that \[ \hom \cdot {\dim _{M{U_ \ast }}}M{U_ \ast }(X \times B{\mathbf {Z}}/p) > \hom \cdot {\dim _{M{U_ \ast }}}M{U_ \ast }(X) + \hom \cdot {\dim _{M{U_ \ast }}}M{U_ \ast }(B{\mathbf {Z}}/p).\]References
- P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964. MR 0176478
- P. E. Conner and Larry Smith, On the complex bordism of finite complexes, Inst. Hautes Études Sci. Publ. Math. 37 (1969), 117–221. MR 267571, DOI 10.1007/BF02684888 L. Smith, On realizing complex bordism modules. I, II, Amer. J. Math. 92 (1970), 793-856; ibid. 93 (1971), 226-263. MR 43 #1186a, b. R. E. Stong (Editor), Some research problems in complex bordism and related areas, Univ. of Kentucky, 1973.
- Noburu Yamamoto, Algebra of stable homotopy of Moore space, J. Math. Osaka City Univ. 14 (1963), 45–67. MR 157382, DOI 10.2307/2373397
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 56 (1976), 288-290
- MSC: Primary 55B45
- DOI: https://doi.org/10.1090/S0002-9939-1976-0407831-9
- MathSciNet review: 0407831