Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On $\mathrm {hom} \dim M \mathrm {U}_* (X\times Y)$

Author: Duane O’Neill
Journal: Proc. Amer. Math. Soc. 56 (1976), 288-290
MSC: Primary 55B45
MathSciNet review: 0407831
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $p$ be a prime and $B{\mathbf {Z}}/p$ the classifying space for the cyclic group ${\mathbf {Z}}/p$ of prime order $p$. A finite complex $X$ is constructed such that \[ \hom \cdot {\dim _{M{U_ \ast }}}M{U_ \ast }(X \times B{\mathbf {Z}}/p) > \hom \cdot {\dim _{M{U_ \ast }}}M{U_ \ast }(X) + \hom \cdot {\dim _{M{U_ \ast }}}M{U_ \ast }(B{\mathbf {Z}}/p).\]

References [Enhancements On Off] (What's this?)

  • P. E. Conner and E. E. Floyd, Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 33, Academic Press Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964. MR 0176478
  • P. E. Conner and Larry Smith, On the complex bordism of finite complexes, Inst. Hautes Études Sci. Publ. Math. 37 (1969), 117–221. MR 267571
  • L. Smith, On realizing complex bordism modules. I, II, Amer. J. Math. 92 (1970), 793-856; ibid. 93 (1971), 226-263. MR 43 #1186a, b. R. E. Stong (Editor), Some research problems in complex bordism and related areas, Univ. of Kentucky, 1973.
  • Noburu Yamamoto, Algebra of stable homotopy of Moore space, J. Math. Osaka City Univ. 14 (1963), 45–67. MR 157382

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55B45

Retrieve articles in all journals with MSC: 55B45

Additional Information

Keywords: Projective dimension of complex bordism modules of Cartesian products
Article copyright: © Copyright 1976 American Mathematical Society