## Dynamical systems with cross-sections

HTML articles powered by AMS MathViewer

- by Dean A. Neumann PDF
- Proc. Amer. Math. Soc.
**56**(1976), 339-344 Request permission

## Abstract:

The problem of classifying dynamical systems (flows) with global cross-sections in terms of the associated diffeomorphisms of the cross-sections is considered. Suppose that, for $i = 1,2,{\phi _i}$ is a ${C^r}$ flow $(r \geqslant 0)$ on the ${C^r}$ manifold ${M_i}$ that admits a global cross-section ${S_i} \subseteq {M_i}$ with associated diffeomorphism (’first return map’) ${d_i}$. If rank $({H_1}({M_1};{\mathbf {Z}})) = 1$, then $({M_1},{\phi _1})$ is ${C^s}$ equivalent $(s \leqslant r)$ to $({M_2},{\phi _2})$ if and only if ${d_1}$ is ${C^s}$ conjugate to ${d_2}$. If rank $({H_1}({M_1};{\mathbf {Z}})) \ne 1$ and ${\phi _1}$ has a periodic orbit, then there are infinitely many global cross-sections ${T_i} \subseteq {M_1}$ of ${\phi _1}$, such that the associated diffeomorphisms are pairwise nonconjugate.## References

- Ralph Abraham and Joel Robbin,
*Transversal mappings and flows*, W. A. Benjamin, Inc., New York-Amsterdam, 1967. An appendix by Al Kelley. MR**0240836** - W. Browder and J. Levine,
*Fibering manifolds over a circle*, Comment. Math. Helv.**40**(1966), 153–160. MR**195104**, DOI 10.1007/BF02564368 - F. B. Fuller,
*The existence of periodic points*, Ann. of Math. (2)**57**(1953), 229–230. MR**52764**, DOI 10.2307/1969856 - Sze-tsen Hu,
*On singular homology in differentiable spaces*, Ann. of Math. (2)**50**(1949), 266–269. MR**30198**, DOI 10.2307/1969451 - Gikô Ikegami,
*On classification of dynamical systems with cross-sections*, Osaka Math. J.**6**(1969), 419–433. MR**266224** - Gikô Ikegami,
*Flow equivalence of diffeomorphisms. I, II*, Osaka J. Math.**8**(1971), 49–69; ibid. 8 (1971), 71–76. MR**287577** - William S. Massey,
*Algebraic topology: An introduction*, Harcourt, Brace & World, Inc., New York, 1967. MR**0211390** - Ivan Kupka,
*Contribution à la théorie des champs génériques*, Contributions to Differential Equations**2**(1963), 457–484 (French). MR**165536**

## Additional Information

- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**56**(1976), 339-344 - MSC: Primary 58F99; Secondary 57D50
- DOI: https://doi.org/10.1090/S0002-9939-1976-0407903-9
- MathSciNet review: 0407903