Dynamical systems with cross-sections
HTML articles powered by AMS MathViewer
- by Dean A. Neumann
- Proc. Amer. Math. Soc. 56 (1976), 339-344
- DOI: https://doi.org/10.1090/S0002-9939-1976-0407903-9
- PDF | Request permission
Abstract:
The problem of classifying dynamical systems (flows) with global cross-sections in terms of the associated diffeomorphisms of the cross-sections is considered. Suppose that, for $i = 1,2,{\phi _i}$ is a ${C^r}$ flow $(r \geqslant 0)$ on the ${C^r}$ manifold ${M_i}$ that admits a global cross-section ${S_i} \subseteq {M_i}$ with associated diffeomorphism (’first return map’) ${d_i}$. If rank $({H_1}({M_1};{\mathbf {Z}})) = 1$, then $({M_1},{\phi _1})$ is ${C^s}$ equivalent $(s \leqslant r)$ to $({M_2},{\phi _2})$ if and only if ${d_1}$ is ${C^s}$ conjugate to ${d_2}$. If rank $({H_1}({M_1};{\mathbf {Z}})) \ne 1$ and ${\phi _1}$ has a periodic orbit, then there are infinitely many global cross-sections ${T_i} \subseteq {M_1}$ of ${\phi _1}$, such that the associated diffeomorphisms are pairwise nonconjugate.References
- Ralph Abraham and Joel Robbin, Transversal mappings and flows, W. A. Benjamin, Inc., New York-Amsterdam, 1967. An appendix by Al Kelley. MR 0240836
- W. Browder and J. Levine, Fibering manifolds over a circle, Comment. Math. Helv. 40 (1966), 153–160. MR 195104, DOI 10.1007/BF02564368
- F. B. Fuller, The existence of periodic points, Ann. of Math. (2) 57 (1953), 229–230. MR 52764, DOI 10.2307/1969856
- Sze-tsen Hu, On singular homology in differentiable spaces, Ann. of Math. (2) 50 (1949), 266–269. MR 30198, DOI 10.2307/1969451
- Gikô Ikegami, On classification of dynamical systems with cross-sections, Osaka Math. J. 6 (1969), 419–433. MR 266224
- Gikô Ikegami, Flow equivalence of diffeomorphisms. I, II, Osaka J. Math. 8 (1971), 49–69; ibid. 8 (1971), 71–76. MR 287577
- William S. Massey, Algebraic topology: An introduction, Harcourt, Brace & World, Inc., New York, 1967. MR 0211390
- Ivan Kupka, Contribution à la théorie des champs génériques, Contributions to Differential Equations 2 (1963), 457–484 (French). MR 165536
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 56 (1976), 339-344
- MSC: Primary 58F99; Secondary 57D50
- DOI: https://doi.org/10.1090/S0002-9939-1976-0407903-9
- MathSciNet review: 0407903