A remark on the restriction map in field formation
HTML articles powered by AMS MathViewer
- by Hironori Onishi
- Proc. Amer. Math. Soc. 56 (1976), 24-26
- DOI: https://doi.org/10.1090/S0002-9939-1976-0409414-3
- PDF | Request permission
Abstract:
In this note we point out that in a field formation $(G,\{ {G_F}\} ,A)$, if ${h_2}(K/F) = {[K:F]^c}$ for every normal layer $K/F$ with a fixed integer $c \geqslant 0$, then for every tower $F \subset E \subset K$ with $K/F$ normal, the restriction map ${H^2}(K/F) \to {H^2}(K/E)$ is surjective, and give an example with $c = 2$.References
- E. Artin and J. Tate, Class field theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0223335
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 56 (1976), 24-26
- MSC: Primary 12A60
- DOI: https://doi.org/10.1090/S0002-9939-1976-0409414-3
- MathSciNet review: 0409414