Monotone decompositions of Hausdorff continua
HTML articles powered by AMS MathViewer
- by Eldon J. Vought
- Proc. Amer. Math. Soc. 56 (1976), 371-376
- DOI: https://doi.org/10.1090/S0002-9939-1976-0410693-7
- PDF | Request permission
Abstract:
A monotone, upper semicontinuous decomposition of a compact, Hausdorff continuum is admissible if the layers (tranches) of the irreducible subcontinua of $M$ are contained in the elements of the decomposition. It is proved that the quotient space of an admissible decomposition is hereditarily arcwise connected and that every continuum $M$ has a unique, minimal admissible decomposition $\mathcal {A}$. For hereditarily unicoherent continua $\mathcal {A}$ is also the unique, minimal decomposition with respect to the property of having an arcwise connected quotient space. A second monotone, upper semicontinuous decomposition $\mathcal {G}$ is constructed for hereditarily unicoherent continua that is the unique minimal decomposition with respect to having a semiaposyndetic quotient space. Then $\mathcal {G}$ refines $\mathcal {G}$ and $\mathcal {G}$ refines the unique, minimal decomposition $\mathcal {L}$ of FitzGerald and Swingle with respect to the property of having a locally connected quotient space (for hereditarily unicoherent continua).References
- R. H. Bing, Some characterizations of arcs and simple closed curves, Amer. J. Math. 70 (1948), 497–506. MR 25722, DOI 10.2307/2372193
- J. J. Charatonik, On decompositions of continua, Fund. Math. 79 (1973), no. 2, 113–130. MR 321034, DOI 10.4064/fm-79-2-113-130
- J. J. Charatonik, On decompositions of $\lambda$-dendroids, Fund. Math. 67 (1970), 15–30. MR 261556, DOI 10.4064/fm-67-1-15-30
- R. W. FitzGerald and P. M. Swingle, Core decomposition of continua, Fund. Math. 61 (1967), 33–50. MR 224063, DOI 10.4064/fm-61-1-33-50
- G. R. Gordh Jr., Concerning closed quasi-orders on hereditarily unicoherent continua, Fund. Math. 78 (1973), no. 1, 61–73. MR 322835, DOI 10.4064/fm-78-1-61-73
- G. R. Gordh Jr., Monotone decompositions of irreducible Hausdorff continua, Pacific J. Math. 36 (1971), 647–658. MR 281163
- F. Burton Jones, Aposyndetic continua and certain boundary problems, Amer. J. Math. 63 (1941), 545–553. MR 4771, DOI 10.2307/2371367
- F. Burton Jones, Concerning non-aposyndetic continua, Amer. J. Math. 70 (1948), 403–413. MR 25161, DOI 10.2307/2372339
- Louis F. McAuley, An atomic decomposition of continua into aposyndetic continua, Trans. Amer. Math. Soc. 88 (1958), 1–11. MR 124033, DOI 10.1090/S0002-9947-1958-0124033-8
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 56 (1976), 371-376
- MSC: Primary 54F15
- DOI: https://doi.org/10.1090/S0002-9939-1976-0410693-7
- MathSciNet review: 0410693