Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Some remarks on summability factors


Author: Lloyd A. Gavin
Journal: Proc. Amer. Math. Soc. 56 (1976), 130-134
MSC: Primary 40G05
DOI: https://doi.org/10.1090/S0002-9939-1976-0412664-3
MathSciNet review: 0412664
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Bosanquet [2] showed that a necessary and sufficient condition for $\Sigma _{k = 1}^\infty {x_k}{y_k}$ to be Cesàro summable of order $n$ ($n$ is a nonnegative integer) whenever $\sigma _k^n(y) = o(k)$ where $\sigma _k^n(y)$ is the $k$ th Cesàro mean of $y$ of order $n$ is that $\Sigma _{k = 1}^\infty {k^{n + 1}}|{\Delta ^{n + 1}}{x_k}| < \infty$ and ${\lim _{k \to 0}}k{x_k} = 0$. The main result of this paper is to show that a necessary and sufficient condition for $\Sigma _{k = 1}^\infty {x_k}{y_k}$ to be Cesàro summable of order $n$ ($n$ is a nonnegative integer) whenever $\Sigma _{k = 1}^\infty {k^{n + 1}}|{\Delta ^{n + 1}}{x_k}| < \infty$ and ${\lim _{k \to \infty }}k{x_k} = 0$ is that $\sigma _k^n(y) = o(k)$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 40G05

Retrieve articles in all journals with MSC: 40G05


Additional Information

Keywords: Summabllity factors
Article copyright: © Copyright 1976 American Mathematical Society