Some remarks on summability factors
HTML articles powered by AMS MathViewer
- by Lloyd A. Gavin
- Proc. Amer. Math. Soc. 56 (1976), 130-134
- DOI: https://doi.org/10.1090/S0002-9939-1976-0412664-3
- PDF | Request permission
Abstract:
Bosanquet [2] showed that a necessary and sufficient condition for $\Sigma _{k = 1}^\infty {x_k}{y_k}$ to be Cesàro summable of order $n$ ($n$ is a nonnegative integer) whenever $\sigma _k^n(y) = o(k)$ where $\sigma _k^n(y)$ is the $k$ th Cesàro mean of $y$ of order $n$ is that $\Sigma _{k = 1}^\infty {k^{n + 1}}|{\Delta ^{n + 1}}{x_k}| < \infty$ and ${\lim _{k \to 0}}k{x_k} = 0$. The main result of this paper is to show that a necessary and sufficient condition for $\Sigma _{k = 1}^\infty {x_k}{y_k}$ to be Cesàro summable of order $n$ ($n$ is a nonnegative integer) whenever $\Sigma _{k = 1}^\infty {k^{n + 1}}|{\Delta ^{n + 1}}{x_k}| < \infty$ and ${\lim _{k \to \infty }}k{x_k} = 0$ is that $\sigma _k^n(y) = o(k)$.References
- L. S. Bosanquet, Note on convergence and summability factors, J. London Math. Soc. 20 (1945), 39–48. MR 15522, DOI 10.1112/jlms/s1-20.1.39
- L. S. Bosanquet, Note on convergence and summability factors. II, Proc. London Math. Soc. (2) 50 (1948), 295–304. MR 26136, DOI 10.1112/plms/s2-50.4.295
- L. S. Bosanquet and H. C. Chow, Some remarks on convergence and summability factors, J. London Math. Soc. 32 (1957), 73–82. MR 83607, DOI 10.1112/jlms/s1-32.1.73
- Günther Goes, Bounded variation sequences of order $k$ and the representation of null sequences, J. Reine Angew. Math. 253 (1972), 152–161. MR 299979, DOI 10.1515/crll.1972.253.152
- Günther Goes and Sigrun Goes, Sequences of bounded variation and sequences of Fourier coefficients. I, Math. Z. 118 (1970), 93–102. MR 438019, DOI 10.1007/BF01110177
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 56 (1976), 130-134
- MSC: Primary 40G05
- DOI: https://doi.org/10.1090/S0002-9939-1976-0412664-3
- MathSciNet review: 0412664