WHICH OPERATORS ARE SIMILAR TO PARTIAL ISOMETRIES?

L. A. FIALKOW

Abstract. Let \(\mathcal{H} \) denote a separable, infinite dimensional complex Hilbert space and let \(\mathcal{L}(\mathcal{H}) \) denote the algebra of all bounded linear operators on \(\mathcal{H} \). Let \(\mathcal{P} = \{ T \in \mathcal{L}(\mathcal{H}) | \sigma(T) < 1 \text{ and } T \text{ is similar to a partial isometry with infinite rank} \} \); let \(\mathcal{S} = \{ S \in \mathcal{L}(\mathcal{H}) | r(S) < 1, \text{range}(S) \text{ is closed, and } \text{rank}(S) = \text{nullity}(S) = n_0 \} \). It is conjectured that \(\mathcal{P} = \mathcal{S} \) and it is proved that \(\mathcal{P} \subset \mathcal{S} \subset \mathcal{P}^{-} \).

Introduction. Let \(\mathcal{H} \) denote a fixed separable, infinite-dimensional complex Hilbert space, and let \(\mathcal{L}(\mathcal{H}) \) denote the algebra of all bounded linear operators on \(\mathcal{H} \). In [5], Sz.-Nagy proved that an invertible operator \(T \) in \(\mathcal{L}(\mathcal{H}) \) is similar to a unitary operator if and only if the powers of \(T \) and \(T^{-1} \) are uniformly bounded; the proof of this result also implies that an operator is similar to an isometry if and only if its powers are uniformly bounded above and below [4]. In this note we state the following conjecture concerning operators similar to partial isometries, and then prove results which partially affirm the conjecture.

Conjecture. If \(T \) is an operator on \(\mathcal{H} \) with closed range, whose spectral radius is less than one, and such that \(\text{rank}(T) = \text{nullity}(T) = \text{nullity}(T^*) = n_0 \), then \(T \) is similar to a partial isometry.

Let \(\mathcal{P} = \{ T \in \mathcal{L}(\mathcal{H}) | r(T) < 1 \text{ and } T \text{ is similar to a partial isometry with infinite rank} \} \), where \(r(T) \) is the spectral radius of \(T \); let \(\mathcal{S} = \{ S \in \mathcal{L}(\mathcal{H}) | r(S) < 1, \text{range}(S) \text{ is closed, and } \text{rank}(S) = \text{nullity}(S) = \text{corank}(S) = n_0 \} \). It is easy to prove that \(\mathcal{P} \subset \mathcal{S} \) and in this note we prove that \(\mathcal{P} \subset \mathcal{S} \subset \mathcal{P}^{-} \) (the norm closure of \(\mathcal{P} \) in \(\mathcal{L}(\mathcal{H}) \)). To state the results in detail we use the following notation. If \(A \) and \(B \) are operators on \(\mathcal{H} \) such that \(A^*A + B^*B \) is invertible, let \(M(A, B) \) denote the operator on \(\mathcal{H} \oplus \mathcal{H} \) whose matrix is \(\begin{pmatrix} A & B \\ A^* & B^* \end{pmatrix} \); let \(\mathcal{T} \) denote the set of all matrices of this form whose spectral radii are less than one. Each operator in \(\mathcal{S} \) is unitarily equivalent to a matrix in \(\mathcal{T} \).

Theorem 1. The operator \(M(A, B) \) in \(\mathcal{T} \) is similar to a partial isometry if any of the following conditions are satisfied:

(i) \(0 \) is not in the interior of \(\sigma(A) \);
(ii) \(\text{nullity}(A) = \text{corank}(A) \);
(iii) \(\text{nullity}(A) < \text{corank}(A) = n_0 \) and \(B \) is not compact;
(iv) \(B \) is a semi-Fredholm operator;
(v) \(\text{corank}(A) < \text{nullity}(A) \), \(A \) has closed range, and \(B^*|E \) is not compact, where

\[
E = \{ y \in \mathcal{H} | \exists x \in \mathcal{H} : A^*x + B^*y = 0 \}.
\]

Received by the editors October 7, 1974 and, in revised form, January 10, 1975.

© American Mathematical Society 1976
Let (J) denote the ideal of all compact operators in $\mathcal{L}(\mathcal{H} \oplus \mathcal{H})$. If T is in $\mathcal{L}(\mathcal{H} \oplus \mathcal{H})$, let \tilde{T} denote the image of T under the canonical homomorphism of $\mathcal{L}(\mathcal{H} \oplus \mathcal{H})$ onto the Calkin algebra $\mathcal{L}(\mathcal{H} \oplus \mathcal{H})/(J)$.

Theorem 2. If $T = M(A, B)$ is in \mathcal{S} then \tilde{T} is similar to a partial isometry if either of the following conditions is satisfied:

(i) $\text{nullity}(A)$ and $\text{corank}(A)$ are finite;

(ii) B is compact.

Because these results do not cover the case $\text{corank}(A) < \text{nullity}(A) = \aleph_0$, we do not know whether $\mathcal{S} = \mathcal{S}$. We note also that the proof of Theorem 1-iii was motivated by the proof of a factorization theorem of R. G. Douglas [1, Lemma 2.1]. The author thanks the referee for suggestions that have clarified certain points in the original proofs of our results.

Proof of Theorems 1 and 2.

Lemma 0. If $T = M(A, B)$ is in \mathcal{S}, then the nonzero elements of $\sigma(T)$ and $\sigma(B)$ are identical.

Proof. If $\lambda \neq 0$ and $B - \lambda$ is invertible, then a calculation shows that $(T - \lambda)^{-1}$ is given by the operator matrix

$$
\begin{pmatrix}
-1/\lambda & (-1/\lambda)A(B - \lambda)^{-1} \\
0 & (B - \lambda)^{-1}
\end{pmatrix}.
$$

If $\lambda \neq 0$ and the inverse of $T - \lambda$ exists, denote this inverse by the operator matrix $(\frac{X}{Y})$ a calculation shows that $Z = 0$, so that $W = (B - \lambda)^{-1}$.

Lemma 1. If T is in \mathcal{S}, then T is similar to an operator $M(A, B)$ such that $\|B\| < 1$.

Proof. If $T = M(A(T), B(T))$, Lemma 0 implies that $r(B(T)) < 1$, and Problem 122 of [3] implies that there exists an invertible operator X such that $\|XB(T)X^{-1}\| < 1$. Since T is similar to $M = M(A(T)X^{-1}, XB(T)X^{-1})$, the proof is complete.

Lemma 2. If T is in \mathcal{S} and $\text{nullity}(A(T)) = \text{corank}(A(T))$, then T is similar to an operator $M(A, B)$ such that $A \geq 0$ and $\|B\| < 1$.

Proof. Consider the operator M of Lemma 1. We have $\text{nullity}(A(T)X^{-1}) = \text{nullity}(A(T)) = \text{corank}(A(T)) = \text{corank}(A(T)X^{-1})$, and thus $(A(T)X^{-1} = UP$, where U is unitary and $P \geq 0$. Since M is unitarily equivalent to $M(P, XB(T)X^{-1})$, the proof is complete.

Lemma 3. Let $T = M(A, B)$ be in \mathcal{S} and suppose $A^*A + B^*B \geq \epsilon^2 > 0$. If $|\lambda| > 1$, then T is similar to $M(A - \epsilon/\lambda, B)$.

Proof. Theorem 1 of [1] implies that there exist operators X_1 and X_2 such that $X_1A + X_2B = \epsilon$ and $X_1^*X_1 + X_2^*X_2 \leq 1$. Let $|\lambda| > 1$ and let S denote the operator on $\mathcal{H} \oplus \mathcal{H}$ whose matrix is

$$
\begin{pmatrix}
\frac{1}{\lambda^2} & \frac{1}{\lambda} \\
\frac{1}{\lambda} & 1
\end{pmatrix}.
$$
Now S is invertible and a calculation shows that $SM(A, B)S^{-1}$ is of the desired form.

Proof of Theorem 1-i. The operator M of Lemma 1 is similar to $M(XA(T)X^{-1}, XB(T)X^{-1})$, and thus we may assume that $\|B\| < 1$ and 0 is not in the interior of $\sigma(A)$. By an application of Lemma 3 with λ suitably chosen such that $A - \epsilon/\lambda$ is invertible and $|\lambda| > 1$, we may assume that A is invertible. Since $\|B\| < 1$, we may define $R = A(1 - B^*B)^{-1/2}$ and $S = R \oplus I_\mathcal{C}$; a calculation shows that $S^{-1}TS = M((1 - B^*B)^{1/2}, B)$, which is a partial isometry, and therefore the proof is complete.

Proof of Theorem 1-ii. We may assume from Lemma 2 that $A \geq 0$; the result now follows from Theorem 1-i.

Proof of Theorem 1-iii. Recall that an operator B in $\mathcal{L}(\mathcal{C})$ is not compact if and only if the range of B contains a closed, infinite-dimensional subspace (see, for example, Theorem 2.5 of [2] and Problem 141 of [3]). It follows from this fact and an application of the open mapping theorem that B is not compact if and only if B is bounded below on some closed, infinite-dimensional subspace $M \subset \ker(B)^\perp$. Thus there exists $\delta > 0$ such that $\|Bm\| \leq \delta \|m\|$ for all m in M. For each m in M, we set $X_1(Bm) = Am$. Now

$$\|X_1(Bm)\| = \|Am\| \leq \|A\| \|m\| \leq (\|A\|/\delta) \|Bm\|,$$

and it follows that X_1 is a well-defined bounded linear operator defined on the closed subspace $B(M)$. Let Q denote the projection onto $B(M)$, and let $X = X_1Q$ in $\mathcal{L}(\mathcal{C})$. Now $M \subset \ker(A - XB)$ and since $(A - XB)\mathcal{C} \subset A\mathcal{C}$, we have $\dim \ker(A - XB) = \dim \ker((A - XB)^*) = \mathcal{N}_0$. Since T is similar to $M(A - XB, B)$, the proof may be completed by an application of Theorem 1-ii.

Proof of Theorem 1-iv. From Lemma 1, we may assume $\|B\| < 1$. Recall that an operator B in $\mathcal{L}(\mathcal{C})$ is semi-Fredholm if B has closed range and if either nullity(B) or corank(B) is finite. We consider first the case nullity(B) $< \mathcal{N}_0$; there exists an operator L and a finite rank operator K such that $LB = 1 + K$. Let $X = (\sqrt{1 - B^*B} - A)L$ and let S denote the operator on $\mathcal{H} \oplus \mathcal{C}$ whose matrix is $(\begin{smallmatrix} X & 1 \\ 0 & 1 \end{smallmatrix})$. A calculation shows that $STS^{-1} = M(\sqrt{1 - B^*B} + J, B)$, where J is a finite rank operator. Since $\|B\| < 1$, $\sqrt{1 - B^*B} + J$ is Fredholm with index equal to zero, and the proof may be completed by an application of Theorem 1-ii.

We now consider the case corank(B) $< \mathcal{N}_0$. In this case B^* has finite nullity and closed range. Let P denote the projection onto the initial space of B^* and let $\mathcal{E} = \{x \in \mathcal{H} \mid \exists y \in P\mathcal{C} \text{ such that } A^*x + B^*y = 0\}$. Since B^* has closed range, \mathcal{E} is closed; since nullity $(T^*) = \mathcal{N}_0$ and nullity $(B^*) < \mathcal{N}_0$, \mathcal{E} is infinite dimensional. For each x in \mathcal{E} there is a unique vector $X_1(x)$ in $P\mathcal{C}$ such that $A^*x + B^*X_1(x) = 0$. Since B^* is bounded below on $P\mathcal{C}$, the assignment $x \mapsto X_1(x)$ is bounded and linear on the closed subspace \mathcal{E}. Let Q denote the projection onto \mathcal{E}, and let $X = X_1Q$ in $\mathcal{L}(\mathcal{C})$; thus $\mathcal{E} \subset \ker(A + X^*B^*)^*$. Since \mathcal{E} is infinite dimensional and B is not compact, the proof may be completed by an application of Theorem 1-ii-iii.
Corollary. \(\mathcal{T} \subseteq \mathcal{P}^- \).

Proof. The preceding result implies that if \(T \) is in \(\mathcal{T} \) and \(B(T) \) is either left or right invertible, then \(T \) is in \(\mathcal{P} \). Now there exists a sequence \(\{B_k\} \subseteq \mathcal{L}(\mathcal{X}) \) such that \(\lim \|B_k - B(T)\| = 0 \) and such that the sequence elements are either all left invertible or all right invertible [3, Problem 109]. Since \(B_k^* B_k + A^* A \to B^* B + A^* A \), we may assume that each \(B_k^* B_k + A^* A \) is invertible; from the upper semicontinuity of the spectrum we may assume each \(r(B_k) < 1 \). Therefore, Theorem 1-iv implies that each \(M(A, B_k) \) is in \(\mathcal{P} \), and the proof is complete.

We now assume that \(T \) is in \(\mathcal{T} \) and that \(A^* \) has closed range and finite nullity. Let \(E \) be as in Theorem 1-v; the hypotheses imply that \(E \) is a closed, infinite-dimensional subspace. In view of the previous results it is natural to attempt to find an operator \(X \) such that \(\text{corank}(A + XB) = \aleph_0 \); the following result proves Theorem 1-v.

Proposition. There exists an operator \(X \) such that \(\text{corank}(A + XB) = \aleph_0 \) if and only if \(B^*|E \) is not compact.

Proof. If \(B^*|E \) is not compact, the operator \(X \) may be constructed by a straightforward modification of the proof of Theorem 1-iii; details are omitted.

For the converse, we assume that \(B^*|E \) is compact. Suppose that there is an operator \(X \) on \(\mathcal{X} \) and a closed, infinite-dimensional subspace \(K \subseteq \mathcal{X} \) such that \(A^* t = B^* X^* t \) for each \(t \) in \(K \). Since \(\dim \ker(A^*) < \aleph_0 \), it follows that \(L = K \cap \text{range}(A) \) is infinite dimensional. Since \(A^* \) has closed range, \(A^* \) is bounded below on \(L \). Let \(\{t_n\} \) denote an orthonormal basis for \(L \). Now \(t_n \to 0 \), \(\{X^*(t_n)\} \subseteq E \), and thus \(B^* X^* t_n \to 0 \). Therefore \(A^* t_n \to 0 \), which is a contradiction.

Proof of Theorem 2-i. Let \(A = UP \) denote the polar decomposition of \(A \). Since \(P^2 + B^* B \) is invertible, we may define \(T_1 = M(P, B) \), and Lemma 0 implies that \(r(T_1) = r(B) = r(M(A, B)) < 1 \). Theorem 1-ii now implies that \(T_1 \) is similar to a partial isometry. Since the nullity and corank of \(U \) are finite, \(U \) is unitary, and the proof is completed by noting that

\[
T_1 - (U^* \oplus 1)T(U \oplus 1)
\]

is of finite rank.

Proof of Theorem 2-ii. Theorem 1 of [1] implies that there exist operators \(X_1 \) and \(X_2 \) such that \(X_1 A + X_2 B = 1 \). Since \(B \) is compact, we have \(\tilde{X}_1 \tilde{A} = 1 \), and thus \(A \) has closed range and finite nullity. If \(A = UP \) denotes the polar decomposition of \(A \), then \(P = Q \oplus 0 \), where \(Q \) is invertible. Set \(R = Q^{-1} \oplus 1_\ker(P) \) and \(S = 1_\mathcal{X} \oplus R \). Now \(S^{-1} TS \) has the operator matrix

\[
\begin{pmatrix}
0 & U \\
0 & R^{-1}BR
\end{pmatrix},
\]

which is the sum of a partial isometry and a compact operator.
REFERENCES

Department of Mathematics, Western Michigan University, Kalamazoo, Michigan 49001