On the structure of Lindenbaum algebras: an approach using algebraic logic
HTML articles powered by AMS MathViewer
- by Charles C. Pinter
- Proc. Amer. Math. Soc. 56 (1976), 267-271
- DOI: https://doi.org/10.1090/S0002-9939-1976-0419226-2
- PDF | Request permission
Abstract:
The following problem of algebraic logic is investigated: to determine those Boolean algebras which admit the structure of a nondiscrete cylindric algebra. A partial solution is found, and is then used to give an algebraic characterization of the Lindenbaum algebras of formulas of several broad classes of countable theories.References
- L. Henkin, J. D. Monk and A. Tarski, Cylindric algebras. Part 1. With an introductory chapter: General theory of algebras, Studies in Logic and the Foundations of Math., vol. 64, North-Holland, Amsterdam, 1971. MR 47 #3171.
- Leon Henkin and Alfred Tarski, Cylindric algebras, Proc. Sympos. Pure Math., Vol. II, American Mathematical Society, Providence, R.I., 1961, pp. 83–113. MR 0124250
- Hans-Jürgen Hoehnke, Zur Strukturgleichheit axiomatischer Klassen, Z. Math. Logik Grundlagen Math. 12 (1966), 69–83 (German). MR 188058, DOI 10.1002/malq.19660120109
- Charles Pinter, Terms in cylindric algebras, Proc. Amer. Math. Soc. 40 (1973), 568–572. MR 325391, DOI 10.1090/S0002-9939-1973-0325391-5
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 56 (1976), 267-271
- MSC: Primary 02J15
- DOI: https://doi.org/10.1090/S0002-9939-1976-0419226-2
- MathSciNet review: 0419226