The prime radical in alternative rings
HTML articles powered by AMS MathViewer
- by Michael Rich
- Proc. Amer. Math. Soc. 56 (1976), 11-15
- DOI: https://doi.org/10.1090/S0002-9939-1976-0419547-3
- PDF | Request permission
Abstract:
The characterization by J. Levitzki of the prime radical of an associative ring $R$ as the set of strongly nilpotent elements of $R$ is adapted here to apply to a wide class of nonassociative rings. As a consequence it is shown that the prime radical is a hereditary radical for the class of alternative rings and that the prime radical of an alternative ring coincides with the prime radical of its attached Jordan ring.References
- Nathan Divinsky, Rings and radicals, Mathematical Expositions, No. 14, University of Toronto Press, Toronto, Ont., 1965. MR 0197489
- T. S. Erickson and S. Montgomery, The prime radical in special Jordan rings, Trans. Amer. Math. Soc. 156 (1971), 155–164. MR 274543, DOI 10.1090/S0002-9947-1971-0274543-4
- Jakob Levitzki, Prime ideals and the lower radical, Amer. J. Math. 73 (1951), 25–29. MR 38953, DOI 10.2307/2372156
- Erwin Kleinfeld, Alternative nil rings, Ann. of Math. (2) 66 (1957), 395–399. MR 87638, DOI 10.2307/1969897
- Kevin McCrimmon, A characterization of the Jacobson-Smiley radical, J. Algebra 18 (1971), 565–573. MR 277585, DOI 10.1016/0021-8693(71)90139-6
- Michael Rich, Some radical properties of $s$-rings, Proc. Amer. Math. Soc. 30 (1971), 40–42. MR 283034, DOI 10.1090/S0002-9939-1971-0283034-1
- M. Slater, Ideals in semiprime alternative rings, J. Algebra 8 (1968), 60–76. MR 233862, DOI 10.1016/0021-8693(68)90035-5
- Chester Tsai, The prime radical in a Jordan ring, Proc. Amer. Math. Soc. 19 (1968), 1171–1175. MR 230776, DOI 10.1090/S0002-9939-1968-0230776-X
- Chester Tsai, An internal characterization of the prime radical of a Jordan algebra, Proc. Amer. Math. Soc. 36 (1972), 361–364. MR 313343, DOI 10.1090/S0002-9939-1972-0313343-X
- Paul J. Zwier, Prime ideals in a large class of nonassociative rings, Trans. Amer. Math. Soc. 158 (1971), 257–271. MR 281763, DOI 10.1090/S0002-9947-1971-0281763-1
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 56 (1976), 11-15
- MSC: Primary 17D05
- DOI: https://doi.org/10.1090/S0002-9939-1976-0419547-3
- MathSciNet review: 0419547