The final value problem for Sobolev equations
HTML articles powered by AMS MathViewer
- by John Lagnese
- Proc. Amer. Math. Soc. 56 (1976), 247-252
- DOI: https://doi.org/10.1090/S0002-9939-1976-0419971-9
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 63 (1977), 375.
Abstract:
Let $A$ and $B$ be $m$-accretive linear operators in a complex Hilbert space $H$ with $D(A) \subset D(B)$. The method of quasi-reversibility is used to obtain a solution to the Sobolev equation $(d/dt)[(I + B)u(t)] + Au(t) = 0,0 < t < 1$, which approximates a specified final value $u(1) = f$. In general, when $D(A) \subset D(B)$, it is not possible to find a solution which achieves exactly the final value $u(1) = f$.References
- N. Dunford and J. T. Schwartz, Linear operators. II: Spectral theory. Selfadjoint operators in Hilbert space, Wiley, New York, 1963. MR 32 #6181.
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- John Lagnese, Existence, uniqueness and limiting behavior of solutions of a class of differential equations in Banach space, Pacific J. Math. 53 (1974), 473–485. MR 361336 R. Lattés and J.-L. Lions, The method of quasi-reversibility, Modern Analytic and Computational Methods in Sci. and Math., no. 18, Elsevier, New York, 1969. MR 39 #5067.
- R. E. Showalter, Equations with operators forming a right angle, Pacific J. Math. 45 (1973), 357–362. MR 318971
- R. E. Showalter, The final value problem for evolution equations, J. Math. Anal. Appl. 47 (1974), 563–572. MR 352644, DOI 10.1016/0022-247X(74)90008-0
- Kôsaku Yosida, Functional analysis, Die Grundlehren der mathematischen Wissenschaften, Band 123, Academic Press, Inc., New York; Springer-Verlag, Berlin, 1965. MR 0180824
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 56 (1976), 247-252
- MSC: Primary 34G05; Secondary 35R20
- DOI: https://doi.org/10.1090/S0002-9939-1976-0419971-9
- MathSciNet review: 0419971