ISOPERIMETRIC INEQUALITIES FOR A NONLINEAR EIGENVALUE PROBLEM

CATHERINE BANDLE

Abstract. An estimate for the spectrum of the two-dimensional eigenvalue problem \(\Delta u + \lambda e^u = 0 \) in \(D (\lambda > 0) \), \(u = 0 \) on \(\partial D \) is derived, and upper and lower pointwise bounds for the solutions are constructed.

1. Let \(D \) be a simply connected bounded domain in the plane with a piecewise analytic boundary \(\partial D \). Consider the nonlinear Dirichlet problem

\[
\begin{align*}
\Delta u(x) + \lambda e^{u(x)} &= 0 & \text{in } D, \\
u(x) &= 0 & \text{on } \partial D,
\end{align*}
\]

where \(\lambda \) is a positive real number and \(x \) stands for the generic point \((x_1, x_2) \). This problem arises in the theory of self-ignition of a chemically active gas [4 and the literature cited there] and has been studied by many authors [2], [3], [5].

It was shown in [3] and [5] that there exists a number \(\lambda^* > 0 \) such that the problem has at least one solution for each \(\lambda \leq \lambda^* \), but does not have solutions for \(\lambda > \lambda^* \). Bounds for \(\lambda^* \) are found in [2]. In particular it was proved that \(\lambda^* > 2\pi/A \) where \(A \) denotes the area of \(D \). Equality is attained if and only if \(D \) is a circle. In this paper we prove that \(\lambda^* < 2/R_0^2 \), \(R_0 \) being the maximal conformal radius of \(D \). We also give estimates for the solutions by means of the conformal radius. Our proofs are based on the introduction of a special system of coordinates defined by the level lines; see [6].

2. Let \(g(x, \xi) \) be the Green’s function for the Laplace operator, vanishing on \(\partial D \). It is well known that for fixed \(x \in D \)

\[
g(x, \xi) = (2\pi)^{-1} \log(R_x/|x - \xi|) + H(x, \xi)
\]

where \(R_x \) is the conformal radius of \(x \) with respect to \(D \),

\[
|x - \xi| = \left(\sum_{i=1}^{2} (x_i - \xi_i)^2 \right)^{1/2}
\]

and \(H(x, \xi) \) is a harmonic function of \(\xi \) with \(\lim_{\xi \to x} H(x, \xi) = 0 \). With the help of this Green’s function Problem (1) can be written as an integral equation:

Received by the editors November 18, 1974 and, in revised form, May 29, 1975.
We now keep x fixed and denote by $D(t)$ the domain $\{ \xi \in D; g(x, \xi) > t \}$. It is homeomorphic to a circle. Let us assume that Problem (1) has a solution $u \in C^2(D) \cap C^0(D)$. Since e' is real analytic, $u(x)$ is also real analytic. Define

$$a(t) = \int_{D(t)} e^{u(\xi)} d\xi.$$

Let $\Gamma(t) = \{ \xi \in D; g(x, \xi) = t \}$. It is a simple closed curve and analytic for all $t > 0$. Denote by $\delta n > 0$ the piece of normal between $\Gamma(t)$ and $\Gamma(t + dt)$. If s is the arclength of $\Gamma(t)$, then [6, especially p. 213]

$$da(t) = a(t + dt) - a(t) = - \oint_{\Gamma(t)} e^{u(\xi)} \delta n ds_\xi + o(dt).$$

Because of the strong maximum principle, $|\text{grad } g(x, \xi)|$ cannot vanish on $\Gamma(t)$, hence

$$\frac{da}{dt} = - \oint_{\Gamma(t)} e^{u(\xi)} |\text{grad } g(x, \xi)|^{-1} ds_\xi.$$

(3) can be written in the following form:

$$u(x) = -\lambda \int_0^\infty t \cdot \frac{da}{dt} \cdot dt.$$

Integration by parts yields

$$u(x) = \lambda \int_0^\infty a(t) dt.$$

By the Schwarz inequality we have

$$\oint_{\Gamma(t)} e^{u(\xi)} |\text{grad } g|^{-1} d\xi \cdot \oint_{\Gamma(t)} |\text{grad } g| d\xi_\xi \geq \left\{ \oint_{\Gamma(t)} e^{u(\xi)/2} ds_\xi \right\}^2$$

and therefore

$$-\frac{da}{dt} \geq \left\{ \oint_{\Gamma(t)} e^{u(\xi)/2} ds_\xi \right\}^2.$$

Consider the abstract surface given by the domain $D \subset \mathbb{R}^2$ and the Riemann metric $ds^2 = e^{u(\xi)} ds^2$. Its Gaussian curvature is $K = -\Delta u/(2e^u) = \lambda/2$.

Because of the isoperimetric inequality for manifolds of constant Gaussian curvature [1, p. 514],

$$\left\{ \oint_{\Gamma(t)} e^{u(\xi)/2} ds \right\}^2 \geq 4\pi a(t) - \frac{\lambda}{2} a^2(t).$$

This inequality together with (6) implies that

$$-\frac{da}{dt} \geq 4\pi a(t) - \frac{\lambda}{2} a^2(t)/2.$$
Thus, \(m(t) = e^{-4\pi i (1/a(t) - \lambda / 8\pi)} \) is a nondecreasing function of \(t \). From (2) we conclude that

\[
\lim_{t \to \infty} m(t) = 1/(\pi R_x^2 e^{u(x)}).
\]

Hence

\[
m(t) \leq 1/(\pi R_x^2 e^{u(x)}) \quad \text{for all } t > 0,
\]

\[
a(t) \geq \frac{1}{e^{4\pi i / (\pi R_x^2 e^{u(x)})} + \lambda / 8\pi}.
\]

If we insert this estimate into (5) and integrate, we obtain

(7) \[e^{u(x)/2} \geq 1 + \lambda R_x^2 e^{u(x)}/8. \]

Let us put for short \(\beta = \lambda R_x^2/8 \). Then (7) yields

(8) \[\left[e^{u(x)/2} - 1/(2\beta) \right]^2 + 1/\beta - 1/(4\beta^2) \leq 0. \]

Hence, the expression \(1/\beta - 1/(4\beta^2) \) must be nonpositive, and we therefore have

(9) \[\lambda R_x^2 \leq 2. \]

From this inequality we conclude that

(10) \[\lambda^* \leq 2/R_0^2. \]

Consider now a circle of radius \(R \). The radially symmetric solutions of (1) are in this case [4]

\[u_i(r) = \log \frac{b_i}{(1 + \lambda (b_i/8) r^2)^2} \]

where \(r = |x| \) and

\[b_i = \frac{32}{\lambda^2 R^4} \left(1 - \frac{\lambda R^2}{4} + (-1)^i \left(1 - \frac{\lambda R^2}{2} \right)^{1/2} \right), \quad i = 1, 2. \]

the function \(u_i(r) \) corresponds to the minimal solution [5], [2]. By [5, Theorem 3.2] it follows that Problem (1) has a solution if and only if a minimal solution exists. Thus, \(\lambda^* = 2/R_0^2 \).

We therefore have proved

Theorem 1. Let \(D \) be a simply connected domain in \(\mathbb{R}^2 \), and let \(R_0 \) be its maximal conformal radius. Then \(\lambda^* \leq 2/R_0^2 \). Equality holds for the circle.

The next result is an immediate consequence of (8).

Theorem 2. Under the assumptions of Theorem 1 we have

(11) \[1 - \sqrt{1 - 4\beta} \leq 2e^{-u(x)/2} \leq 1 + \sqrt{1 - 4\beta} \]

where \(\beta = \lambda R_x^2 \).
Equality holds at the right-hand side if D is a circle, x is taken at the center and $u(x)$ is the minimal solution $u_1(r)$. Equality holds at the left-hand side if D is a circle, x is taken at the center and $u(x)$ corresponds to $u_2(r)$.

Remark. Since $R_x \neq 0$ for $x \in D, x \notin \partial D$, (11) leads to the conjecture that for fixed λ all solutions of Problem (1) are uniformly bounded.

Let $d(x)$ be the distance from the point $x \in D$ to the boundary ∂D. By the monotony of R_x with respect to the domain it follows that $R_x \geq d(x)$. This inequality together with (11) leads to the

Corollary. Under the assumptions of Theorem 1 we have

$$1 - \sqrt{1 - \lambda d^2(x)/2} \leq 2e^{-u(x)/2} \leq 1 + \sqrt{1 - \lambda d^2(x)/2}.$$

References

Mathematisches Institut, Universität Basel, CH-4051 Basel, Switzerland