Isoperimetric inequalities for a nonlinear eigenvalue problem
HTML articles powered by AMS MathViewer
- by Catherine Bandle
- Proc. Amer. Math. Soc. 56 (1976), 243-246
- DOI: https://doi.org/10.1090/S0002-9939-1976-0477402-7
- PDF | Request permission
Abstract:
An estimate for the spectrum of the two-dimensional eigenvalue problem $\Delta u + \lambda {e^u} = 0$ in $D(\lambda > 0),u = 0$ on $\partial D$ is derived, and upper and lower pointwise bounds for the solutions are constructed.References
- A. D. Aleksandrov, Vnutrennyaya Geometriya Vypuklyh Poverhnosteĭ, OGIZ, Moscow-Leningrad, 1948 (Russian). MR 0029518
- Catherine Bandle, Existence theorems, qualitative results and a priori bounds for a class of nonlinear Dirichlet problems, Arch. Rational Mech. Anal. 58 (1975), no. 3, 219–238. MR 454336, DOI 10.1007/BF00280742
- Michael G. Crandall and Paul H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal. 58 (1975), no. 3, 207–218. MR 382848, DOI 10.1007/BF00280741
- I. M. Gel′fand, Some problems in the theory of quasi-linear equations, Uspehi Mat. Nauk 14 (1959), no. 2 (86), 87–158 (Russian). MR 0110868
- Herbert B. Keller and Donald S. Cohen, Some positone problems suggested by nonlinear heat generation, J. Math. Mech. 16 (1967), 1361–1376. MR 0213694
- G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, No. 27, Princeton University Press, Princeton, N. J., 1951. MR 0043486
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 56 (1976), 243-246
- MSC: Primary 35B45; Secondary 35P15
- DOI: https://doi.org/10.1090/S0002-9939-1976-0477402-7
- MathSciNet review: 0477402