A characterization of $F^{+}\cap N$
HTML articles powered by AMS MathViewer
- by M. Stoll
- Proc. Amer. Math. Soc. 57 (1976), 97-98
- DOI: https://doi.org/10.1090/S0002-9939-1976-0399471-5
- PDF | Request permission
Abstract:
In this note we give a characterization of ${F^ + } \cap N$, where $N$ denotes the Nevanlinna class of functions of bounded characteristic and ${F^ + }$ denotes the containing Fréchet space of ${N^ + }$. We show that a holomorphic function $f \in {F^ + } \cap N$ if and only if $f(z) = g(z)/{S_\mu }(z)$, where $g \in {N^ + }$ and ${S_\mu }$ is a singular inner function with respect to a nonnegative continuous singular measure $\mu$.References
- Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
- James W. Roberts, The component of the origin in the Nevanlinna class, Illinois J. Math. 19 (1975), no. 4, 553–559. MR 382672
- Harold S. Shapiro, Weakly invertible elements in certain function spaces, and generators in ${\cal l}_{1}$, Michigan Math. J. 11 (1964), 161–165. MR 166343
- Joel H. Shapiro and Allen L. Shields, Unusual topological properties of the Nevanlinna class, Amer. J. Math. 97 (1975), no. 4, 915–936. MR 390227, DOI 10.2307/2373681
- Niro Yanagihara, Multipliers and linear functionals for the class $N^{+}$, Trans. Amer. Math. Soc. 180 (1973), 449–461. MR 338382, DOI 10.1090/S0002-9947-1973-0338382-X
- Niro Yanagihara, The containing Fréchet space for the class $N^{+}$, Duke Math. J. 40 (1973), 93–103. MR 344860
- Niro Yanagihara, The class $N^{+}$ of holomorphic functions and its containing Fréchet space $F^{+}$, Boll. Un. Mat. Ital. (4) 8 (1973), 230–245 (English, with Italian summary). MR 0333195
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 57 (1976), 97-98
- DOI: https://doi.org/10.1090/S0002-9939-1976-0399471-5
- MathSciNet review: 0399471