Diophantine inequalities with mixed powers $(\textrm {mod}$ $1)$
HTML articles powered by AMS MathViewer
- by R. J. Cook
- Proc. Amer. Math. Soc. 57 (1976), 29-34
- DOI: https://doi.org/10.1090/S0002-9939-1976-0401647-5
- PDF | Request permission
Abstract:
A theorem of Heilbronn on the distribution of the sequence ${n^2}\theta \pmod 1$ is extended to sums of mixed powers.References
- Kwok Kei Chong and Ming Chit Liu, The fractional parts of a sum of polynomials, Monatsh. Math. 81 (1976), no. 3, 195–202. MR 409377, DOI 10.1007/BF01303192
- R. J. Cook, The fractional parts of an additive form, Proc. Cambridge Philos. Soc. 72 (1972), 209–212. MR 297712, DOI 10.1017/s0305004100047034
- H. Davenport, On a theorem of Heilbronn, Quart. J. Math. Oxford Ser. (2) 18 (1967), 339–344. MR 223307, DOI 10.1093/qmath/18.1.339
- H. Davenport, Analytic methods for Diophantine equations and Diophantine inequalities, Ann Arbor Publishers, Ann Arbor, Mich., 1963. The University of Michigan, Fall Semester, 1962. MR 0159786 G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 4th ed., Oxford Univ. Press, Oxford, 1965.
- H. Heilbronn, On the distribution of the sequence $n^2\theta (\textrm {mod} 1)$, Quart. J. Math. Oxford Ser. 19 (1948), 249–256. MR 27294, DOI 10.1093/qmath/os-19.1.249
- I. M. Vinogradov, The method of trigonometrical sums in the theory of numbers, Trav. Inst. Math. Stekloff 23 (1947), 109 (Russian). MR 0029417
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 57 (1976), 29-34
- MSC: Primary 10B45
- DOI: https://doi.org/10.1090/S0002-9939-1976-0401647-5
- MathSciNet review: 0401647