Nonatomic Banach lattices can have $l_ 1$ as a dual space
HTML articles powered by AMS MathViewer
- by E. Lacey and P. Wojtaszczyk
- Proc. Amer. Math. Soc. 57 (1976), 79-84
- DOI: https://doi.org/10.1090/S0002-9939-1976-0402459-9
- PDF | Request permission
Abstract:
Examples of nonatomic $M$ spaces whose duals are ${l_1}$ are constructed.References
- Y. Benyamini, Separable $G$ spaces are isomorphic to $C(K)$ spaces, Israel J. Math. 14 (1973), 287–293. MR 333668, DOI 10.1007/BF02764890
- C. Bessaga and A. Pełczyński, Spaces of continuous functions. IV. On isomorphical classification of spaces of continuous functions, Studia Math. 19 (1960), 53–62. MR 113132, DOI 10.4064/sm-19-1-53-62
- Mahlon M. Day, Normed linear spaces, Reihe: Reelle Funktionen, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. MR 0094675 A. Gleit, Some separable ${L_1}$-preduals are isomorphic to $C(X)$ spaces, 1974 (unpublished).
- H. Elton Lacey, The isometric theory of classical Banach spaces, Die Grundlehren der mathematischen Wissenschaften, Band 208, Springer-Verlag, New York-Heidelberg, 1974. MR 0493279, DOI 10.1007/978-3-642-65762-7
- Heinrich P. Lotz, Minimal and reflexive Banach lattices, Math. Ann. 209 (1974), 117–126. MR 358285, DOI 10.1007/BF01351316
- G. Ja. Lozanovskiĭ and A. A. Mekler, Completely linear functionals and reflexivity in normed linear lattices, Izv. Vysš. Učebn. Zaved. Matematika 1967 (1967), no. 11 (66), 47–53 (Russian). MR 0220044
- A. Pełczyński and P. Wojtaszczyk, Banach spaces with finite dimensional expansions of identity and universal bases of finite dimensional subspaces, Studia Math. 40 (1971), 91–108. MR 313765, DOI 10.4064/sm-40-1-91-108
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 57 (1976), 79-84
- MSC: Primary 46A40; Secondary 46B05
- DOI: https://doi.org/10.1090/S0002-9939-1976-0402459-9
- MathSciNet review: 0402459