A generalization of the Wiener-Lévy theorem applicable to some Volterra equations
HTML articles powered by AMS MathViewer
- by G. S. Jordan and Robert L. Wheeler
- Proc. Amer. Math. Soc. 57 (1976), 109-114
- DOI: https://doi.org/10.1090/S0002-9939-1976-0405023-0
- PDF | Request permission
Abstract:
Recently, Shea and Wainger obtained a variant of the Wiener-Lévy theorem for nonintegrable functions of the form $a(t) = b(t) + \beta (t)$, where $b(t)$ is nonnegative, nonincreasing, convex and locally integrable, and $\beta (t),t\beta (t) \in {L^1}(0,\infty )$. It is shown here that the moment condition $t\beta (t) \in {L^1}$ may be omitted from the hypotheses of this theorem. These results are useful in the study of stability problems for some Volterra integral and integrodifferential equations.References
- Avner Friedman, On integral equations of Volterra type, J. Analyse Math. 11 (1963), 381–413. MR 158232, DOI 10.1007/BF02789991
- Richard R. Goldberg, Fourier transforms, Cambridge Tracts in Mathematics and Mathematical Physics, No. 52, Cambridge University Press, New York, 1961. MR 0120501
- S. I. Grossman and R. K. Miller, Perturbation theory for Volterra integrodifferential systems, J. Differential Equations 8 (1970), 457–474. MR 270095, DOI 10.1016/0022-0396(70)90018-5
- S. I. Grossman and R. K. Miller, Nonlinear Volterra integrodifferential systems with $L^{1}$-kernels, J. Differential Equations 13 (1973), 551–566. MR 348417, DOI 10.1016/0022-0396(73)90011-9
- Kenneth B. Hannsgen, Indirect abelian theorems and a linear Volterra equation, Trans. Amer. Math. Soc. 142 (1969), 539–555. MR 246058, DOI 10.1090/S0002-9947-1969-0246058-1 N. Levinson, A nonlinear Volterra equation arising in the theory of superfluidity, J. Math. Anal. Appl. 1 (1960), 1-11.
- W. Robert Mann and František Wolf, Heat transfer between solids and gases under nonlinear boundary conditions, Quart. Appl. Math. 9 (1951), 163–184. MR 42596, DOI 10.1090/S0033-569X-1951-42596-7
- R. K. Miller, On Volterra integral equations with nonnegative integrable resolvents, J. Math. Anal. Appl. 22 (1968), 319–340. MR 227707, DOI 10.1016/0022-247X(68)90176-5
- Richard K. Miller, Nonlinear Volterra integral equations, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Menlo Park, Calif., 1971. MR 0511193
- Raymond E. A. C. Paley and Norbert Wiener, Fourier transforms in the complex domain, American Mathematical Society Colloquium Publications, vol. 19, American Mathematical Society, Providence, RI, 1987. Reprint of the 1934 original. MR 1451142, DOI 10.1090/coll/019 D. F. Shea, Unpublished manuscript.
- Daniel F. Shea and Stephen Wainger, Variants of the Wiener-Lévy theorem, with applications to stability problems for some Volterra integral equations, Amer. J. Math. 97 (1975), 312–343. MR 372521, DOI 10.2307/2373715
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 57 (1976), 109-114
- MSC: Primary 45D05
- DOI: https://doi.org/10.1090/S0002-9939-1976-0405023-0
- MathSciNet review: 0405023