Extreme operators in the unit ball of $L(C(X),C(Y))$ over the complex field
HTML articles powered by AMS MathViewer
- by Alan Gendler
- Proc. Amer. Math. Soc. 57 (1976), 85-88
- DOI: https://doi.org/10.1090/S0002-9939-1976-0405173-9
- PDF | Request permission
Abstract:
Assume that $X$ and $Y$ are compact Hausdorff spaces and that $C(X)$ and $C(Y)$ are the Banach spaces of continuous complex-valued functions on $X$ and $Y$, respectively. $L(C(X),C(Y))$ is the space of bounded linear operators from $C(X)$ to $C(Y)$. If $E$ is a Banach space, then $S(E)$ is the closed unit ball in $E$. An operator $T$ in $S(L(C(X),C(Y)))$ is nice if ${T^ \ast }(\operatorname {ext} S(C{(Y)^ \ast })) \subset \operatorname {ext} S(C{(X)^ \ast })$. For each $y \in Y,{\varepsilon _y}$ denotes point mass at $y$. The main theorem states that if $T$ is extreme in $S(L(C(X),C(Y)))$ and $||{T^ \ast }({\varepsilon _y})|| = 1$ for all $y \in Y$, then $T$ is nice. Other theorems are proved by using the same techniques as in the proof of the main theorem.References
- D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. (2) 88 (1968), 35–46. MR 228983, DOI 10.2307/1970554
- R. F. Arens and J. L. Kelley, Characterization of the space of continuous functions over a compact Hausdorff space, Trans. Amer. Math. Soc. 62 (1947), 499–508. MR 22999, DOI 10.1090/S0002-9947-1947-0022999-0
- R. M. Blumenthal, Joram Lindenstrauss, and R. R. Phelps, Extreme operators into $C(K)$, Pacific J. Math. 15 (1965), 747–756. MR 209862, DOI 10.2140/pjm.1965.15.747
- H. H. Corson and J. Lindenstrauss, Continuous selections with nonmetrizable range, Trans. Amer. Math. Soc. 121 (1966), 492–504. MR 187214, DOI 10.1090/S0002-9947-1966-0187214-8
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199, DOI 10.1007/978-1-4615-7819-2
- Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210528
- M. Sharir, Characterization and properties of extreme operators into $C(Y)$, Israel J. Math. 12 (1972), 174–183. MR 317026, DOI 10.1007/BF02764661
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 57 (1976), 85-88
- MSC: Primary 47D20
- DOI: https://doi.org/10.1090/S0002-9939-1976-0405173-9
- MathSciNet review: 0405173