On the cellularity of $\beta X-X$
HTML articles powered by AMS MathViewer
- by John Ginsburg and R. Grant Woods
- Proc. Amer. Math. Soc. 57 (1976), 151-154
- DOI: https://doi.org/10.1090/S0002-9939-1976-0407789-2
- PDF | Request permission
Abstract:
For a topological space $X$, let $c(X)$ denote the cellularity of $X$, and let $k(X)$ denote the least cardinal of a cobase for the compact subsets of $X$. It is shown that, if $X$ is a completely regular Hausdorff space, $c(\beta X - X) \leqslant {2^{c(X)k(X)}}$, and examples are given to show that this inequality is sharp. It is also shown that if $X$ is an extremally disconnected completely regular Hausdorff space for which $c(\beta X - X) > {2^{k(X)}}$, then $\beta X - X$ contains a discrete ${C^ \ast }$-embedded subspace of cardinality $k{(X)^ + }$.References
- A. V. Arhangel′skiÄ, A class of spaces which contains all metric and all locally compact spaces, Mat. Sb. (N.S.) 67 (109) (1965), 55–88 (Russian). MR 0190889
- W. W. Comfort, A survey of cardinal invariants, General Topology and Appl. 1 (1971), no. 2, 163–199. MR 290326, DOI 10.1016/0016-660X(71)90122-X
- W. W. Comfort and Hugh Gordon, Disjoint open subsets of $\beta X\sbs X$, Trans. Amer. Math. Soc. 111 (1964), 513–520. MR 163280, DOI 10.1090/S0002-9947-1964-0163280-9
- B. A. Efimov, Extremally disconnected bicompacta and absolutes (on the occasion of the one hundredth anniversary of the birth of Felix Hausdorff), Trudy Moskov. Mat. Obšč. 23 (1970), 235–276 (Russian). MR 0418016
- P. Erdös and R. Rado, A partition calculus in set theory, Bull. Amer. Math. Soc. 62 (1956), 427–489. MR 81864, DOI 10.1090/S0002-9904-1956-10036-0
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199, DOI 10.1007/978-1-4615-7819-2
- Irving Glicksberg, Stone-Čech compactifications of products, Trans. Amer. Math. Soc. 90 (1959), 369–382. MR 105667, DOI 10.1090/S0002-9947-1959-0105667-4 I. Juhász, Cardinal functions in topology, Mathematical Centre Tracts 34, Mathematical Centre, Amsterdam, The Netherlands, 1971.
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 57 (1976), 151-154
- MSC: Primary 54A25; Secondary 54D40
- DOI: https://doi.org/10.1090/S0002-9939-1976-0407789-2
- MathSciNet review: 0407789