SOLVABILITY OF CONVOLUTION EQUATIONS IN \mathcal{K}'_1

S. SZNAJDER AND Z. ZIELEZNY

Abstract. Let S be a convolution operator in the space \mathcal{K}'_1 of distributions of exponential growth. A condition on S introduced by O. von Grudzinski is proved to be equivalent to $S \ast \mathcal{K}'_1 = \mathcal{K}'_1$.

This paper is motivated by a recent result of O. von Grudzinski [2], who characterized convolution operators in \mathcal{B}' having fundamental solutions of exponential growth in \mathbb{R}^n. Convolution operators in the space \mathcal{B}' of all distributions in \mathbb{R}^n are distributions with compact support, i.e. in \mathcal{B}'. We state the main part of Grudzinski's theorem (see [2, Theorem 1.1]) in a form suitable for our purpose, using the space \mathcal{K}'_1 of distributions of exponential growth introduced by M. Hasumi [3].

Let S be a distribution in \mathcal{B}' and \hat{S} its Fourier transform. The following conditions are equivalent:

(a) There exist positive constants N, r, C such that

$$\sup_{s \in \mathbb{C}^n, |s| \leq r} |\hat{S}(\xi + s)| \geq \frac{C}{(1 + |\xi|)^N}, \quad \xi \in \mathbb{R}^n;$$

(b) S has a fundamental solution in \mathcal{K}'_1.

We recall that a distribution $E \in \mathcal{B}'$ is a fundamental solution for $S \in \mathcal{B}'$ if $S \ast E = \delta$ where \ast denotes the convolution and δ the Dirac measure at the origin.

We now ask the question of solvability of convolution equations in \mathcal{K}'_1. Let $\mathcal{O}_C(\mathcal{K}'_1 : \mathcal{K}'_1)$ be the space of convolution operators in \mathcal{K}'_1 (see [3] or [5]). Under what conditions on $S \in \mathcal{O}_C(\mathcal{K}'_1 : \mathcal{K}'_1)$ is $S \ast \mathcal{K}'_1 = \mathcal{K}'_1$? The last equality means that the mapping $u \mapsto S \ast u$ maps \mathcal{K}'_1 onto \mathcal{K}'_1.

Theorem. If S is a distribution in $\mathcal{O}_C(\mathcal{K}'_1 : \mathcal{K}'_1)$ then each of the conditions (a) and (b) is equivalent to (c) $S \ast \mathcal{K}'_1 = \mathcal{K}'_1$.

Before presenting the proof we recall the basic facts about the spaces \mathcal{K}'_1 and $\mathcal{O}_C(\mathcal{K}'_1 : \mathcal{K}'_1)$; the proofs can be found in [3] or [5].

Let \mathcal{K}'_1 be the space of all C^∞-functions φ in \mathbb{R}^n such that

$$v_k(\varphi) = \sup_{x \in \mathbb{R}^n, |x| \leq k} \gamma_k(x)|D^a \varphi(x)| < \infty, \quad k = 0, 1, \ldots,$$

Received by the editors July 7, 1975.

© American Mathematical Society 1976
where \(D^\alpha = D_1^{\alpha_1} \cdots D_n^{\alpha_n}, \) \(D_j = i^{-1} \partial / \partial x_j \) and \(\gamma_k(x) = \prod_{j=1}^n (e^{kx_j} + e^{-kx_j}). \) The topology in \(\mathcal{K}_1 \) is defined by the seminorms \(\nu_k. \) Then \(\mathcal{K}_1 \) is a Fréchet space.

The dual \(\mathcal{K}_1' \) of \(\mathcal{K}_1 \) is the space of distributions of exponential growth. A distribution \(u \in \mathcal{D}' \) is in \(\mathcal{K}_1' \) if and only if there exists a multi-index \(\beta, \) an integer \(k > 0 \) and a bounded, continuous function \(f \) in \(\mathbb{R}^n \) such that \(u = D^\beta(\gamma_k f). \) \(\mathcal{K}_1' \) is endowed with the topology of uniform convergence on all bounded sets in \(\mathcal{K}_1. \)

If \(u \in \mathcal{K}_1' \) and \(\varphi \in \mathcal{K}_1, \) then the convolution \(u \ast \varphi \) is a \(C^\infty \)-function defined by

\[
\langle u \ast \varphi, \varphi \rangle = \langle u, \varphi(x - y) \rangle
\]

where \(\langle u, \varphi \rangle = u(\varphi). \)

More generally, the space \(\mathcal{E}_c(\mathcal{K}_1' : \mathcal{K}_1') \) of convolution operators in \(\mathcal{K}_1' \) consists of distributions \(S \in \mathcal{K}_1' \) satisfying one of the equivalent conditions:

(i) The products \(\gamma_k S, k = 0, 1, \ldots, \) are tempered distributions.

(ii) Given any \(k = 0, 1, \ldots, \) \(S \) can be represented in the form \(S = \sum |a| \leq m D^a f_a, \) where \(f_a, |a| \leq m, \) are continuous functions in \(\mathbb{R}^n \) such that

\[
f_a(x) = O(1/\gamma_k(x)) \quad \text{as} \quad |x| \to \infty.
\]

(iii) For every \(\varphi \in \mathcal{K}_1, \) \(S \ast \varphi \) is in \(\mathcal{K}_1. \) Moreover, the mapping \(\varphi \to S \ast \varphi \) of \(\mathcal{K}_1 \) into \(\mathcal{K}_1 \) is continuous.

If \(S \in \mathcal{E}_c(\mathcal{K}_1' : \mathcal{K}_1') \) and \(\tilde{S} \) is obtained from \(S \) by symmetry with respect to the origin, i.e. \(\langle \tilde{S}, \varphi \rangle = \langle S_x, \varphi(-x) \rangle, \) \(\varphi \in \mathcal{K}_1, \) then \(\tilde{S} \) is also in \(\mathcal{E}_c(\mathcal{K}_1' : \mathcal{K}_1'). \) The convolution of \(S \) with \(u \in \mathcal{K}_1' \) is then defined by

\[
\langle S \ast u, \varphi \rangle = \langle u, \tilde{S} \ast \varphi \rangle, \quad \varphi \in \mathcal{K}_1.
\]

For \(\varphi \in \mathcal{K}_1, \) the Fourier transform

\[
\hat{\varphi}(\xi) = \int_{\mathbb{R}^n} e^{-i\langle \xi, x \rangle} \varphi(x) \, dx
\]

can be continued in \(C^n \) as an entire function such that

\[
w_k(\hat{\varphi}) = \sup_{\xi \in C^n, |\text{Im} \xi| \leq k} (1 + |\xi|)^k |\hat{\varphi}(\xi)| < \infty, \quad k = 0, 1, \ldots
\]

If \(K_1 \) is the space of all entire functions with property (2) and the topology in \(K_1 \) is defined by the seminorms \(w_k, \) then the Fourier transform is an isomorphism of \(\mathcal{K}_1 \) onto \(K_1. \)

The dual \(\mathcal{K}_1' \) of \(K_1 \) is the space of Fourier transforms of distributions in \(\mathcal{K}_1. \) For \(u \in \mathcal{K}_1', \) the Fourier transform \(\hat{u} \) is defined by the Parseval formula

\[
\langle \hat{u}, \varphi \rangle = (2\pi)^n \langle u_x, \varphi(-x) \rangle.
\]

The Fourier transform \(\tilde{S} \) of a distribution \(S \in \mathcal{E}_c(\mathcal{K}_1' : \mathcal{K}_1') \) is a function which can be continued in \(C^n \) as an entire function with the following property: for every \(k = 0, 1, \ldots, \) there exists \(l = 0, 1, \ldots, \) such that

\[
\sup_{\xi \in C^n, |\text{Im} \xi| \leq k} |\tilde{S}(\xi)|(1 + |\xi|)^{-l} < \infty.
\]
Also, if \(S \in \mathcal{E}_c(\mathcal{K}'_1 : \mathcal{K}_1) \) and \(u \in \mathcal{K}'_1 \), we have the formula
\[
S \hat{*} u = \hat{S}u,
\]
where the product on the right-hand side is defined by \(\langle \hat{S}u, \chi \rangle = \langle \hat{u}, \hat{S}\chi \rangle \), \(\chi \in \mathcal{K}_1 \).

In the proof of our theorem we shall make use of the following lemma of L. Hörmander (see [4, Lemma 3.2]):

If \(F, G \) and \(F/G \) are entire functions and \(\rho \) is an arbitrary positive number, then
\[
\left| \frac{F(\xi)}{G(\xi)} \right| \leq \sup_{|\xi-s|<4\rho} |F(s)| \sup_{|\xi-s|<4\rho} |G(s)| \left(\frac{\sup_{|\xi|<\rho} |G(s)|}{\sup_{|\xi|<\rho} |F(s)|} \right)^2,
\]
where \(\xi, s \in \mathbb{C}^n \).

Proof of the theorem. It is obvious that \((c) \Rightarrow (b) \). The implication \((b) \Rightarrow (a) \) was proved in [2] for \(S \in \mathcal{E}' \). In the more general case where \(S \in \mathcal{E}_c(\mathcal{K}'_1 : \mathcal{K}_1) \) the proof of this implication needs only minor modifications and therefore we leave it out. Thus it remains to show that \((a) \Rightarrow (c) \).

Let \(S \) be a distribution in \(\mathcal{E}_c(\mathcal{K}'_1 : \mathcal{K}_1) \) satisfying condition \((a) \) and let \(T = \hat{S} \); in that case \(T \) also satisfies condition \((a) \). We consider the mapping \(S \hat{*}: u \to S \hat{*} u \) of \(\mathcal{K}'_1 \) into \(\mathcal{K}_1 \). By (1), \(S \hat{*} \) is the transpose of the mapping \(T \hat{*}: \varphi \to T \hat{*} \varphi \) of \(\mathcal{K}_1 \) into \(\mathcal{K}_1 \). In order to prove \((c) \) it suffices to show that \(T \hat{*} \) is an isomorphism of \(\mathcal{K}_1 \) onto \(T \hat{*} \mathcal{K}_1 \) (see [1, Corollary, p. 92]).

By what we have said before, the mapping \(T \hat{*} \) is continuous. Also, using Fourier transforms it is easy to see that \(T \hat{*} \) is injective. We now prove that the inverse of \(T \hat{*} \), i.e. the mapping \(T \hat{*} \varphi \to \varphi \), is continuous. Since the Fourier transformation is an isomorphism, it suffices to prove the equivalent statement that the mapping \(\hat{T}\varphi \to \hat{\varphi} \) is continuous.

Suppose that \(\hat{T}\varphi = \hat{\psi} \) where \(\hat{\varphi}, \hat{\psi} \in \mathcal{K}_1 \) and \(\hat{T} \) is an entire function satisfying condition \((a) \). We pick an integer \(k \geq 0 \) arbitrarily and assume that \(\xi = \xi + i\eta \) is in the horizontal strip \(|\eta| < k \). Applying to the functions \(\hat{\varphi}, \hat{T} \) (and \(\hat{\psi}/\hat{T} = \hat{\varphi} \)) Hörmander’s Lemma with \(\rho = k + r \), we obtain

\[
|\hat{\varphi}(\xi)| \leq \sup_{|\xi-s|<4(k+r)} |\hat{\psi}(s)| \sup_{|\xi-s|<4(k+r)} |\hat{T}(s)| \left(\frac{\sup_{|\xi|<\rho} |\hat{T}(s)|}{\sup_{|\xi|<\rho} |\hat{\psi}(s)|} \right)^2.
\]

But
\[
\sup_{|\xi-s|<k+r} |\hat{T}(s)| = \sup_{|s|<k+r} |\hat{T}(\xi + s)| \geq \sup_{|s|<r} |\hat{T}(\xi + s)|
\]
\[
\geq C/(1 + |\xi|)^N \geq C/(1 + |\xi|)^N,
\]
where we made use of condition \((a) \).

On the other hand, since \(|\eta| \leq k \), there exist constants \(N', C' > 0 \) such that
\[
\sup_{|\xi-s|<4(k+r)} |\hat{T}(s)| = \sup_{|s|<4(k+r)} |\hat{T}(\xi + s)| \leq C'(1 + |\xi|)^{N'},
\]
in view of (3).

Now combining (4) with (5) and (6) we obtain
\[|\hat{\varphi}(\xi)| \leq C^\ast (1 + |\xi|)^{2N + N'} \sup_{|\xi - s| < 4(k + r)} |\hat{\psi}(\xi)|, \]

where \(C^\ast \) is a constant. Hence it follows that

\[w_k(\hat{\varphi}) \leq C^\ast w_l(\hat{\psi}), \]

where \(C^\ast \) is another constant (depending only on \(T \) and \(k \)) and \(l \) is an integer \(\geq \max\{5k + 4r, k + 2N + N'\} \). This proves the continuity of the mapping \(T\hat{\varphi} = \hat{\psi} \rightarrow \hat{\varphi} \) and consequently the implication \((a) \Rightarrow (c) \).

REFERENCES

5. Z. Zieleźny, *On the space of convolution operators in \(K_1 \)'*, Studia Math. 31 (1968), 111–124. MR 40 #1772.

DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK AT BUFFALO, AMHERST, NEW YORK 14226 (Current address of Z. Zieleźny)

Current address (S. Sznajder): Department of Mathematics, University of Copenhagen, 2100 Copenhagen, Denmark