Primitive ideals in group rings of polycyclic groups
HTML articles powered by AMS MathViewer
- by Robert L. Snider
- Proc. Amer. Math. Soc. 57 (1976), 8-10
- DOI: https://doi.org/10.1090/S0002-9939-1976-0414622-1
- PDF | Request permission
Abstract:
If $F$ is a field which is not algebraic over a finite field and $G$ is a polycyclic group, then all primitive ideals of the group ring $F[G]$ are maximal if and only if $G$ is nilpotent-by-finite.References
- George M. Bergman, The logarithmic limit-set of an algebraic variety, Trans. Amer. Math. Soc. 157 (1971), 459–469. MR 280489, DOI 10.1090/S0002-9947-1971-0280489-8
- P. Hall, On the finiteness of certain soluble groups, Proc. London Math. Soc. (3) 9 (1959), 595–622. MR 110750, DOI 10.1112/plms/s3-9.4.595
- D. S. Passman, Primitive group rings, Pacific J. Math. 47 (1973), 499–506. MR 332942
- J. E. Roseblade, The integral group rings of hypercentral groups, Bull. London Math. Soc. 3 (1971), 351–355. MR 291314, DOI 10.1112/blms/3.3.351
- J. E. Roseblade, Group rings of polycyclic groups, J. Pure Appl. Algebra 3 (1973), 307–328. MR 332944, DOI 10.1016/0022-4049(73)90034-0
- A. E. Zalesskiĭ, The irreducible representations of finitely generated nilpotent groups without torsion, Mat. Zametki 9 (1971), 199–210 (Russian). MR 302769
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 57 (1976), 8-10
- MSC: Primary 16A26
- DOI: https://doi.org/10.1090/S0002-9939-1976-0414622-1
- MathSciNet review: 0414622