Sur les fonctions de deux variables dont les coupes sont des dérivées
HTML articles powered by AMS MathViewer
- by Zbigniew Grande
- Proc. Amer. Math. Soc. 57 (1976), 69-74
- DOI: https://doi.org/10.1090/S0002-9939-1976-0419702-2
- PDF | Request permission
Abstract:
This paper concerns relationships between the measurability of a function $f:{I^2} \to R$ (when $I = \langle 0,1\rangle$ and $R$ is the set of all real numbers) and its cross sections ${f_{{x_0}}}(y) = f({x_0},y)$ and ${f^{{y_0}}}(x) = f(x,{y_0})$. A function $g:I \to R$ is said to have property $({\mathbf {K}})$ if for each measurable set $A \subset I$ of positive measure the function $g$ is ponctuellement-discontinue (i.e., the set of continuities is dense) on the closure of the set of all density points of $A$. The main result is: If a function $f:{I^2} \to R$ is bounded and each ${f_x}$ has property $({\mathbf {K}})$ and each ${f^y}$ is a derivative, then $f$ is Lebesgue measurable.References
- Roy O. Davies, Separate approximate continuity implies measurability, Proc. Cambridge Philos. Soc. 73 (1973), 461–465. MR 325870, DOI 10.1017/s0305004100077033
- Z. Grande, Sur la mesurabilité des fonctions de deux variables, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 21 (1973), 813–816 (French, with English and Russian summaries). MR 330399
- Z. Grande, La mesurabilité des fonctions de deux variables, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 657–661 (French, with English and Russian summaries). MR 349940
- Zbigniew Grande, Les fonctions qui ont la propriété (K) et la mesurabilité des fonctions de deux variables, Fund. Math. 93 (1976), no. 3, 155–160. MR 432847, DOI 10.4064/fm-93-3-155-160
- Zbigniew Grande, On the measurability of functions of two variables, Math. Proc. Cambridge Philos. Soc. 77 (1975), 335–336. MR 364587, DOI 10.1017/S030500410005115X
- J. S. Lipiński, On measurability of functions of two variables, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 131–135 (English, with Russian summary). MR 310172
Bibliographic Information
- © Copyright 1976 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 57 (1976), 69-74
- MSC: Primary 26A54
- DOI: https://doi.org/10.1090/S0002-9939-1976-0419702-2
- MathSciNet review: 0419702